PFS CLUSTERING METHOD

被引:45
作者
VOGEL, MA [1 ]
WONG, AKC [1 ]
机构
[1] UNIV WATERLOO,DEPT SYST DESIGN,WATERLOO N2L 3G1,ONTARIO,CANADA
关键词
Cluster analysis; Euclidean distance clustering; group separation criteria; hierarchical clustering; pseudo F-statistic; sum of squares within minimization;
D O I
10.1109/TPAMI.1979.4766919
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents a method of cluster analysis based on a pseudo F-statistic (PFS) criterion function. It is designed to subdivide an ensemble into an optimal set of groups, where the number of groups is not specified and no ad hoc parameters are employed. Univariate and multivariate F-statistic and pseudo F-statistic consistency is displayed. Algorithms for feasible application of PFS are given. Results from simulations are utilized to demonstrate the capabilities of the PFS clustering method and to provide a comparative guide for other users. Copyright © 1979 by The Institute of Electrical and Electronics Engineers, Inc.
引用
收藏
页码:237 / 245
页数:9
相关论文
共 23 条
[1]  
BAILEY DE, 1970, CLUSTER ANAL
[2]  
Ball GH, 1965, ISODATA NOVEL METHOD
[3]  
BALL GH, 1965, AFIPS P, V27, P533
[4]  
Beale E.M.L., 1969, B INT STAT I, V43, P92
[5]  
BROWNLEE KA, 1965, STATISTICAL THEORY M
[6]   REVIEW OF CLASSIFICATION [J].
CORMACK, RM .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES A-GENERAL, 1971, 134 :321-+
[7]  
Duda R.O., 1972, PATTERN CLASSIFICATI
[8]  
FORGY EW, 1965, BIOMETRICS, V21, P768
[9]  
FRIEDMAN HP, 1967, J AM STAT ASSOC, V62, P1152
[10]  
FROM KR, 1976, PATTERN RECOGNITION, V8, P107