INFINITE 0-1-SEQUENCES WITHOUT LONG ADJACENT IDENTICAL BLOCKS

被引:20
作者
PRODINGER, H
URBANEK, FJ
机构
[1] Institut für Mathematische Logik und Formale Sprachen, Technische Universität, Wien
关键词
D O I
10.1016/0012-365X(79)90135-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper deals with sequences a1a2a3 ··· of symbols 0 and 1 with the property that they contain no arbitrary long blocks of the form ai+1 ⋯ ai+k = ww. The behaviour of this class of sequences with respect to some operations is examined. Especially the following is shown: Let be a(0)i = ai, a(n+1)i = ( 1 i) ∑ik = 1 a(n)k, then there exists a sequence without arbitrary long adjacent identical blocks such that no limk→∞a(n)k exists. Let be α ε{lunate} (0, 1), then there exists such a sequence with limk→∞ a(1)k = α. Furthermore a class of sequences appearing in computer graphics is considered. © 1979.
引用
收藏
页码:277 / 289
页数:13
相关论文
共 12 条
[1]  
ARSHON SE, 1937, MAT SB, V2, P776
[2]  
BEAN D, UNPUBLISHED
[3]  
Borel E., 1909, RENDICONTI CIRCOLO M, V27, P247, DOI [DOI 10.1007/BF03019651, 10.1007/BF03019651]
[4]  
Entringer R. C., 1974, Journal of Combinatorial Theory, Series A, V16, P159, DOI 10.1016/0097-3165(74)90041-7
[5]  
Gottschalk W. H., 1955, C PUBLICATIONS AM MA, V36
[6]  
HEDLUND GA, 1944, DUKE MATH J, V11, P1
[7]   0-1-SEQUENCES OF TOEPLITZ TYPE [J].
JACOBS, K ;
KEANE, M .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1969, 13 (02) :123-&
[8]  
KNOPP K, 1931, THEORIE ANWENDUNG UN
[9]  
Kuipers L., 1974, UNIFORM DISTRIBUTION
[10]  
NIVEN I, 1956, MATH ASS AM CARUS MA, V11