ULTIMATE BOUNDS AND GLOBAL ASYMPTOTIC STABILITY FOR DIFFERENTIAL-DELAY EQUATIONS

被引:11
作者
CAO, YL [1 ]
GARD, TC [1 ]
机构
[1] UNIV GEORGIA,DEPT MATH,ATHENS,GA 30602
关键词
DIFFERENTIAL DELAY EQUATIONS; GLOBAL ASYMPTOTIC STABILITY; POPULATION DYNAMICS;
D O I
10.1216/rmjm/1181072271
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We use an interval mapping method to produce a sequence of improved ultimate bounds for positive solutions of differential delay equation models for population growth. We obtain a general result for global asymptotic stability of a positive equilibrium as a consequence.
引用
收藏
页码:119 / 131
页数:13
相关论文
共 7 条
[1]  
CAO Y, 1993, APPL ANAL, V51, P197
[2]  
CUSHING JM, 1979, P CTR INT MATEMATICO
[3]  
FREEDMAN HI, 1986, B MATH BIOL, V48, P483
[4]   ON THE OSCILLATION AND ASYMPTOTIC-BEHAVIOR OF N(T)=N(T)[A+BN(T-TAU)-CN2(T-TAU)] [J].
GOPALSAMY, K ;
LADAS, G .
QUARTERLY OF APPLIED MATHEMATICS, 1990, 48 (03) :433-440
[5]   NICHOLSON BLOWFLIES REVISITED [J].
GURNEY, WSC ;
BLYTHE, SP ;
NISBET, RM .
NATURE, 1980, 287 (5777) :17-21
[6]  
WRIGHT E, 1955, J REINE ANGEW MATH, V494, P66
[7]   GLOBAL ATTRACTIVITY AND OSCILLATIONS IN A PERIODIC DELAY-LOGISTIC EQUATION [J].
ZHANG, BG ;
GOPALSAMY, K .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1990, 150 (01) :274-283