DIRECTING ORBITS OF CHAOTIC DYNAMICAL-SYSTEMS

被引:33
作者
PASKOTA, M
MEES, AI
TEO, KL
机构
来源
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS | 1995年 / 5卷 / 02期
关键词
D O I
10.1142/S0218127495000478
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we consider the directing of orbits of discrete chaotic dynamical systems towards desired targets. Our aim is to significantly reduce the time needed to reach a target region by applying only small, bounded perturbations. We derive an open-loop control from methods of optimal control theory, and we discuss the effects of random dynamical noise on the open-loop control.
引用
收藏
页码:573 / 583
页数:11
相关论文
共 23 条
  • [1] NONLINEAR PREDICTION OF CHAOTIC TIME-SERIES
    CASDAGLI, M
    [J]. PHYSICA D, 1989, 35 (03): : 335 - 356
  • [2] Chen G., 1992, International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, V2, P407, DOI 10.1142/S0218127492000392
  • [3] CHEN G, 1994, CONTROL SYNCHRONIZAT
  • [4] FROM CHAOS TO ORDER - PERSPECTIVES AND METHODOLOGIES IN CONTROLLING CHAOTIC NONLINEAR DYNAMICAL SYSTEMS
    Chen, Guanrong
    Dong, Xiaoning
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1993, 3 (06): : 1363 - 1409
  • [5] MODEL-REFERENCE CONTROL OF NONLINEAR-SYSTEMS VIA IMPLICIT FUNCTION EMULATION
    GOH, CJ
    [J]. INTERNATIONAL JOURNAL OF CONTROL, 1994, 60 (01) : 91 - 115
  • [6] Guckenheimer J., 2013, APPL MATH SCI, DOI 10.1007/978-1-4612- 1140-2
  • [7] JACKSON EA, 1991, PHYSICA D, V50, P341, DOI 10.1016/0167-2789(91)90004-S
  • [8] Jennings L., 1990, MISER3 OPTIMAL CONTR
  • [9] HIGHER-DIMENSIONAL TARGETING
    KOSTELICH, EJ
    GREBOGI, C
    OTT, E
    YORKE, JA
    [J]. PHYSICAL REVIEW E, 1993, 47 (01): : 305 - 310
  • [10] CONTROLLING CHAOTIC DYNAMIC-SYSTEMS USING TIME-DELAY COORDINATES
    NITSCHE, G
    DRESSLER, U
    [J]. PHYSICA D, 1992, 58 (1-4): : 153 - 164