SU(2) AND SU(1,1) PHASE STATES

被引:182
作者
VOURDAS, A
机构
[1] Department of Electrical Engineering and Electronics, University of Liverpool, Liverpool L69 3BX
来源
PHYSICAL REVIEW A | 1990年 / 41卷 / 03期
关键词
D O I
10.1103/PhysRevA.41.1653
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Phase operators and phase states are introduced in the Hilbert space H2j+1 associated with the SU(2) group. The phase operators obey the SU(2) algebra and play a dual role to the standard angular-momentum operators. A finite Weyl group plays a fundamental role in those ideas. In the SU(1,1) case the exponential of the phase operators is nonunitary, and the phase states form an overcomplete set which is used to formulate an analytic representation. © 1990 The American Physical Society.
引用
收藏
页码:1653 / 1661
页数:9
相关论文
共 46 条
[1]   OSCILLATOR PHASE STATES, THERMAL EQUILIBRIUM AND GROUP REPRESENTATIONS [J].
AHARONOV, Y ;
LERNER, EC ;
HUANG, HW ;
KNIGHT, JM .
JOURNAL OF MATHEMATICAL PHYSICS, 1973, 14 (06) :746-756
[2]  
[Anonymous], 1983, QUANTUM THEORY LIGHT
[3]   ATOMIC COHERENT STATES IN QUANTUM OPTICS [J].
ARECCHI, FT ;
THOMAS, H ;
GILMORE, R ;
COURTENS, E .
PHYSICAL REVIEW A, 1972, 6 (06) :2211-&
[4]   IRREDUCIBLE UNITARY REPRESENTATIONS OF THE LORENTZ GROUP [J].
BARGMANN, V .
ANNALS OF MATHEMATICS, 1947, 48 (03) :568-640
[6]   ON NON-COMPACT GROUPS .2. REPRESENTATIONS OF THE 2+1 LORENTZ GROUP [J].
BARUT, AO ;
FRONSDAL, C .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1965, 287 (1411) :532-&
[7]   NEW COHERENT STATES ASSOCIATED WITH NON-COMPACT GROUPS [J].
BARUT, AO ;
GIRARDELLO, L .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1971, 21 (01) :41-+
[8]   PROPERTIES OF GENERALIZED COHERENT STATE [J].
BIALYNIC, Z .
PHYSICAL REVIEW, 1968, 173 (05) :1207-+
[9]   GENERAL 2-MODE SQUEEZED STATES [J].
BISHOP, RF ;
VOURDAS, A .
ZEITSCHRIFT FUR PHYSIK B-CONDENSED MATTER, 1988, 71 (04) :527-529
[10]   GENERALIZED COHERENT STATES AND BOGOLIUBOV TRANSFORMATIONS [J].
BISHOP, RF ;
VOURDAS, A .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1986, 19 (13) :2525-2536