REFLECTION GROUPS AND INTERNAL-SYMMETRY ALGEBRAS

被引:11
作者
BUDINI, P [1 ]
机构
[1] UNIV TRIESTE, IST FIS TEORICA, I-34127 TRIESTE, ITALY
来源
NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA A-NUCLEI PARTICLES AND FIELDS | 1979年 / 53卷 / 01期
关键词
D O I
10.1007/BF02776480
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
It is shown that to discrete Abelian reflection groups in pseudo-Euclidean space there correspond, in spinor index space, non-Abelian groups whose anticommuting elements build up Lie algebras; in particular, two reflections, with respect to orthogonal planes, and their product build up a su 2, c algebra. Conditions are given for these «reflection algebras» to be internal-symmetry algebras (commuting with the Poincaré algebras). When covariance with respect to the «extended» conformal group (conformal transformations and reflections) is postulated, the full use of 8-component conformal spinors is necessary. The conformal spinor is either a doublet of canonical Dirac spinors (Dirac basis) or a doublet of conformal Cartan semi-spinors (eigenstates of Γ 7) (semi-spinor basis). The two bases correspond to equivalent representations in index space, but they give rise to physically nonequivalent spinor equations in Minkowski space: Dirac spinors of the doublet may give rise separately to free particles; semi-spinors do not: they obey coupled spinor equations and they transform into each other for any reversal (including space reversal). The conformal reflection group may generate «internal symmetry algebras», u 2, c for massive spinors, u 2, c,L⊕u 2, c,R for massless ones. Possible conformal covariant Lagrangians with «internal-symmetry algebras» are discussed. It appears that the simplest conformally covariant interaction Lagrangians may naturally represent weak interactions. Next, the group O 4,4 (or O 5,3 or O 6,2) containing conformal and Poincaré groups as subgroups is studied. Reflection groups in V 9 give rise to u 4 «internal symmetry algebra», which becomes u 4,L⊕u 4,R for massless spinors. The u 4 internal symmetry algebra acts on V 8 spinors, which may either be quadruplets of Dirac spinors (Dirac basis) or three independent quadruplets of conformal semi-spinors (semi-spinor basis); on these acts a u 3 algebra orthogonal to the u 4 above. It is shown that conformal semi-spinors may not exist as free fields individually in Minkowski space, since they obey coupled equations, but only in systems and precisely an even number (≥2) for bosons and odd (≥3) for fermions. Furthermore, these systems must be singlets of the u 3 algebra. The analogy of V 8 spinor properties with leptons, when in the Dirac basis, and with coloured quarks, when in the Cartan semi-spinor basis, is emphasized and discussed. © 1979 Società Italiana di Fisica.
引用
收藏
页码:31 / 81
页数:51
相关论文
共 14 条
[1]   CONFORMALLY INVARIANT MASSIVE SPINOR EQUATIONS .1. [J].
BARUT, AO ;
HAUGEN, RB .
NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA A-NUCLEI PARTICLES AND FIELDS, 1973, A 18 (03) :495-510
[2]   SUPERSYMMETRIC YANG-MILLS THEORIES [J].
BRINK, L ;
SCHWARZ, JH ;
SCHERK, J .
NUCLEAR PHYSICS B, 1977, 121 (01) :77-92
[3]   COMPOSITE GAUGE FIELDS AND DYNAMICAL SYMMETRY BREAKING [J].
BUDINI, P ;
FURLAN, P .
NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA A-NUCLEI PARTICLES AND FIELDS, 1975, 30 (01) :63-80
[4]   GENESIS OF UNIFIED MODELS FROM MAJORANA-WEYL FIELDS [J].
BUDINI, P ;
FURLAN, P .
NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA A-NUCLEI PARTICLES AND FIELDS, 1978, 43 (02) :193-211
[5]   CONFORMALLY COVARIANT SPINOR FIELD EQUATIONS [J].
BUDINI, P .
CZECHOSLOVAK JOURNAL OF PHYSICS, 1979, 29 (01) :6-21
[6]  
Budini P., 1978, Hadronic Journal, V1, P1364
[7]  
BUDINI P, IC78133 ICTP PREPR
[8]  
CARTAN E, 1966, THEORY SPINORS
[9]   SUPERSYMMETRY, SUPERGRAVITY THEORIES AND DUAL SPINOR MODEL [J].
GLIOZZI, F ;
SCHERK, J ;
OLIVE, D .
NUCLEAR PHYSICS B, 1977, 122 (02) :253-290
[10]   IS BARYON NUMBER CONSERVED [J].
PATI, JC ;
SALAM, A .
PHYSICAL REVIEW LETTERS, 1973, 31 (10) :661-664