Lorentz symmetry of subdynamics in relativistic systems

被引:6
作者
BenYaacov, U [1 ]
机构
[1] FREE UNIV BRUSSELS,INT SOLVAY INST CHEM,B-1050 BRUSSELS,BELGIUM
来源
PHYSICA A | 1995年 / 222卷 / 1-4期
关键词
D O I
10.1016/0378-4371(95)00285-5
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The subdynamics theory, developed to describe the non-equilibrium evolution of large nonintegrable systems is extended to systems obeying Lorentz symmetry. The subdynmics decomposition is shown to be Lorentz covariant, thus reflecting an intrinsic property of the system. The Lorentz-symmetric subdynamic scheme includes 10 exact kinetic equations, which generate a representation of the Poincare-Lorentz transformations in any degree-of-correlations subspace of the Liouville-space (of density functions or matrices). Separating the internal evolution of the system from its global motion, the relativistic law of life- or decay-time transformation is verified.
引用
收藏
页码:307 / 329
页数:23
相关论文
共 19 条
[1]   GENERALIZED SPECTRAL DECOMPOSITIONS OF MIXING DYNAMIC-SYSTEMS [J].
ANTONIOU, I ;
TASAKI, S .
INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 1993, 46 (03) :425-474
[2]   RELATIVISTIC COVARIANCE OF NON-EQUILIBRIUM STATISTICAL MECHANICS [J].
BALESCU, R ;
BRENIG, L .
PHYSICA, 1971, 54 (04) :504-&
[3]   LORENTZ TRANSFORMATIONS IN PHASE SPACE AND IN PHYSICAL SPACE [J].
BALESCU, R ;
KOTERA, T ;
PINA, E .
PHYSICA, 1967, 33 (03) :581-&
[4]   ON COVARIANT FORMULATION OF CLASSICAL RELATIVISTIC STATISTICAL MECHANICS [J].
BALESCU, R ;
KOTERA, T .
PHYSICA, 1967, 33 (03) :558-&
[5]  
Balescu R., 1975, EQUILIBRIUM NONEQUIL
[6]  
BENYAACOV U, UNPUB
[7]  
BENYAACOV U, INTERNAL EVOLUTION R
[8]  
BENYAACOV U, SUBDYNAMICS CLASSICA
[9]   The dynamical motions of charged particles [J].
Darwin, CG .
PHILOSOPHICAL MAGAZINE, 1920, 39 (233) :537-551
[10]   FORMS OF RELATIVISTIC DYNAMICS [J].
DIRAC, PAM .
REVIEWS OF MODERN PHYSICS, 1949, 21 (03) :392-399