CENTRAL LIMIT THEOREM FOR BACKWARDS MARTINGALES

被引:8
作者
LOYNES, RM
机构
[1] Statistical Laboratory, Cambridge
来源
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE | 1969年 / 13卷 / 01期
关键词
D O I
10.1007/BF00535793
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
That the central theorem is valid for (forward) martingales is a result with a long history, beginning with Lévy [6], the most refined and recent results being due to Billingsley [3]. Not altogether surprisingly, an analogous result holds for backwards martingales, and the proof, which parallels closely that of Billingsley, occupies Section 1. Examples are given in Section 2. © 1969 Springer-Verlag.
引用
收藏
页码:1 / &
相关论文
共 9 条
[1]   LIMITING BEHAVIOR OF POSTERIOR DISTRIBUTIONS WHEN MODEL IS INCORRECT [J].
BERK, RH .
ANNALS OF MATHEMATICAL STATISTICS, 1966, 37 (01) :51-&
[2]  
Billingsley P., 1961, P AM MATH SOC, V12, P788
[3]  
BILLINGSLEY P, 1961, STATISTICAL INFERENC
[4]  
Doob J. L., 1953, STOCHASTIC PROCESSES, V101
[5]   A CLASS OF STATISTICS WITH ASYMPTOTICALLY NORMAL DISTRIBUTION [J].
HOEFFDING, W .
ANNALS OF MATHEMATICAL STATISTICS, 1948, 19 (03) :293-325
[6]  
KHINTCHINE AY, 1960, MATHEMATICAL METHODS
[7]  
Levy PP., 1937, THEORIE ADDITION VAR
[8]   CONSISTENCY OF CERTAIN SEQUENTIAL ESTIMATORS [J].
LOYNES, RM .
ANNALS OF MATHEMATICAL STATISTICS, 1969, 40 (02) :568-&
[9]   ON INTERCHANGING LIMITS AND INTEGRALS [J].
PRATT, JW .
ANNALS OF MATHEMATICAL STATISTICS, 1960, 31 (01) :74-77