INTERFACE RESPONSE THEORY OF CONTINUOUS COMPOSITE SYSTEMS

被引:89
作者
DOBRZYNSKI, L
机构
[1] Equipe Internationale de Dynamique des Interfaces, Laboratoire de Dynamique des Cristaux Moléculaires, Unité Associée (n 801) au CNRS, UFR de Physique, Université des Sciences et Techniques de Lille Flandres Artois
关键词
D O I
10.1016/0167-5729(90)90003-V
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The interface response theory was recently presented for any composite material in discrete spaces. However, continuous spaces are even more used than discrete ones. For example, elasticity theory uses the usual three-dimensional continuous space, while lattice dynamics uses a 3D-discrete space. Similarly, the continuous Schrödinger equation can be solved within the continuous space for free electrons and in the pseudopotential formulations or within the atomic discrete space in the tight-binding approaches. The continuum limits of the main equations of the interface response theory of discrete composite systems will be reported in their most general forms. A general application to elasticity theory, will illustrate this report. © 1990.
引用
收藏
页码:139 / 178
页数:40
相关论文
共 62 条
  • [1] THEORY OF INTERFACES BETWEEN DISCRETE AND CONTINUOUS MEDIA - APPLICATION TO TRANSITION-METAL SURFACE-STATES
    AKJOUJ, A
    DOBRZYNSKI, L
    OLEKSY, C
    [J]. SURFACE SCIENCE, 1989, 213 (2-3) : 630 - 637
  • [2] LATTICE-DYNAMICS OF SYSTEMS WITH 2 INTERFACES
    AKJOUJ, A
    SYLLA, B
    ZIELINSKI, P
    DOBRZYNSKI, L
    [J]. JOURNAL OF PHYSICS C-SOLID STATE PHYSICS, 1987, 20 (36): : 6137 - 6147
  • [3] FERROMAGNETISM OF COMPOSITES WITH 2 INTERFACES
    AKJOUJ, A
    SYLLA, B
    ZIELINSKI, P
    DOBRZYNSKI, L
    [J]. PHYSICAL REVIEW B, 1988, 37 (10): : 5670 - 5676
  • [4] A SIMPLE-MODEL OF METALLIC QUANTUM WELLS
    AKJOUJ, A
    ZIELINSKI, P
    DOBRZYNSKI, L
    [J]. JOURNAL OF PHYSICS C-SOLID STATE PHYSICS, 1987, 20 (36): : 6201 - 6211
  • [5] ALLAN G, 1978, HDB SURFACES INTERFA, V1, P299
  • [6] [Anonymous], MATERIAUX COMPOSITES
  • [7] Boussinesq J., 1885, APPLICATIONS POTENTI
  • [8] BOUSSINESQ J, 1944, TREATISE MATH THEORY
  • [9] TRANSVERSE ELASTIC-WAVES IN PERIODICALLY LAYERED INFINITE AND SEMI-INFINITE MEDIA
    CAMLEY, RE
    DJAFARIROUHANI, B
    DOBRZYNSKI, L
    MARADUDIN, AA
    [J]. PHYSICAL REVIEW B, 1983, 27 (12): : 7318 - 7329
  • [10] COTTAM MG, 1986, MODERN PROBLEMS COND, V9