MINIMAL CODES IN ABELIAN GROUP ALGEBRAS

被引:11
作者
MILLER, RL
机构
[1] Communications Systems Research Section, Jet Propulsion Laboratory, Pasadena
基金
美国国家航空航天局;
关键词
D O I
10.1016/0097-3165(79)90066-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we show that two minimal codes M1 and M2 in the group algebra F2[G] have the same (Hamming) weight distribution if and only if there exists an automorphism θ of G whose linear extension to F2[G] maps M1 onto M2. If θ(M1) = M2, then M1 and M2 are called equivalent. We also show that there are exactly τ(l) inequivalent minimal codes in F2[G], where ℓ is the exponent of G, and τ(ℓ) is the number of divisors of ℓ. © 1979.
引用
收藏
页码:166 / 178
页数:13
相关论文
共 8 条
[1]   MULTIPLEX IMAGING WITH MULTIPLE-PINHOLE CAMERAS [J].
BROWN, C .
JOURNAL OF APPLIED PHYSICS, 1974, 45 (04) :1806-1811
[2]   ON SYNTHESIS OF 2-DIMENSIONAL ARRAYS WITH DESIRABLE CORRELATION PROPERTIES [J].
CALABRO, D ;
WOLF, JK .
INFORMATION AND CONTROL, 1967, 11 (5-6) :537-+
[3]  
Curtis C. W., 1966, Representation theory of Finite Groups and Associative Algebras, V356
[4]   ON EXISTENCE OF PERFECT MAPS [J].
GORDON, B .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1966, 12 (04) :486-+
[5]   STRUCTURE AND PROPERTIES OF BINARY CYCLIC ALPHABETS [J].
MACWILLIAMS, J .
BELL SYSTEM TECHNICAL JOURNAL, 1965, 44 (02) :303-+
[6]   THEORY OF 2-DIMENSIONAL LINEAR RECURRING ARRAYS [J].
NOMURA, T ;
IMAI, H ;
MIYAKAWA, H ;
FUKUDA, A .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1972, 18 (06) :775-+
[7]  
Nomura T., 1971, Electronics and Communications in Japan, V54, P23
[8]  
VANLINT JH, 1971, LECTURE NOTES MATH