THE SPECTRAL REPRESENTATION OF STABLE PROCESSES - HARMONIZABILITY AND REGULARITY

被引:13
作者
MAKAGON, A [1 ]
MANDREKAR, V [1 ]
机构
[1] MICHIGAN STATE UNIV,DEPT STAT & PROBABIL,E LANSING,MI 48824
关键词
D O I
10.1007/BF01377623
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We show that symmetric α-stable moving average processes are not harmonizable. However, we show that a concept of generalized spectrum holds for all Lp-bounded processes O<p<-2. In cape p=2, generalized spectrum is a measure and the classical representation follows. For strongly harmonizable symmetric α-stable processes we derive necessary and sufficient conditions for the regularity and the singularity for 0<α≦2, using known results on the invariant subspaces. We also get Cramér-Wold decomposition for the case 0<α≦2. © 1990 Springer-Verlag.
引用
收藏
页码:1 / 11
页数:11
相关论文
共 24 条
[1]   ERGODIC PROPERTIES OF STATIONARY STABLE PROCESSES [J].
CAMBANIS, S ;
HARDIN, CD ;
WERON, A .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 1987, 24 (01) :1-18
[2]   PREDICTION OF STABLE PROCESSES - SPECTRAL AND MOVING AVERAGE REPRESENTATIONS [J].
CAMBANIS, S ;
SOLTANI, AR .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1984, 66 (04) :593-612
[3]   LINEAR-PROBLEMS IN PTH ORDER AND STABLE PROCESSES [J].
CAMBANIS, S ;
MILLER, G .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1981, 41 (01) :43-69
[4]  
CAMBANIS S, 1985, 110 U N CTR STOCH PR
[5]  
Doob J. L., 1953, STOCHASTIC PROCESSES
[7]  
DUNFORD N, 1964, LINEAR OPERATORS, V1
[8]  
Edwards R.E., 1979, FOURIER SERIES MODER, V2
[9]  
EDWARDS RE, 1979, FOURIER SERIES MODER, V1
[10]  
Gamelin T. W, 1969, UNIFORM ALGEBRAS