INTERMITTENCY AND NON-GAUSSIAN STATISTICS IN TURBULENCE

被引:45
作者
SHE, ZS
机构
[1] Program in Applied and Computational Mathematics, Princeton University, Princeton
关键词
D O I
10.1016/0169-5983(91)90039-L
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
Intermittency effects in turbulence are discussed from a dynamical point of view. A two-fluid model is developed to describe quantitatively the non-gaussian statistics of turbulence at small scales. With a self-similarity argument, the model gives rise to the entire set of inertial range scaling exponents for normalized velocity structure functions. The results are in excellent agreement with experimental and numerical measurements. The model suggests a physical mechanism of intermittency, namely the self-interaction of turbulence structures.
引用
收藏
页码:143 / 158
页数:16
相关论文
共 38 条
[1]  
Andrews, Phillips, Shivamoggi, Beck, Joshi, Phys. Fluids A, 1, (1989)
[2]  
Anselmet, Gagne, Hopfinger, Antonia, J. Fluid Mech., 140, pp. 63-89, (1984)
[3]  
Benzi, Paradin, Parisi, Vulpiani, J. Phys. A, 17, pp. 3521-3531, (1984)
[4]  
Castaing, Conséquences d'un principe d'extremum en turbulence, Journal de Physique, 50, pp. 147-156, (1989)
[5]  
Forster, Nelson, Stephen, Large-distance and long-time properties of a randomly stirred fluid, Physical Review A, 19, (1977)
[6]  
Fournier, Frisch, Phys. Rev. A, 28, (1983)
[7]  
Frenkiel, Klebanoff, Boundary-Layer Met., 8, (1975)
[8]  
Frisch, From Global Scaling, a la Kolmogorov, to Local Multifractal Scaling in Fully Developed Turbulence, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 434, (1991)
[9]  
Frisch, Parisi, Turbulence and Predictability in Geophysical Fluid Dynamics and Climate Dynamics, (1985)
[10]  
Frisch, Orszag, Turbulence: Challenges for Theory and Experiment, Physics Today, 1, pp. 24-32, (1990)