A NEW TRAVELING-WAVE SOLUTION OF FISHER EQUATION WITH DENSITY-DEPENDENT DIFFUSIVITY

被引:9
作者
HAYES, CK [1 ]
机构
[1] CALTECH, DEPT APPL MATH, PASADENA, CA 91125 USA
关键词
FISHER EQUATION; TRAVELING WAVES; VARIABLE DIFFUSIVITY;
D O I
10.1007/BF00164050
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
A new traveling-wave solution of Fisher's equation is found when the diffusivity is taken to be a smoothed step function of the dependent variable. The form of the solution and a necessary relationship between the traveling wave's speed and the diffusivity are predicted. This is done using flux continuity considerations in the limit when the diffusivity is piecewise constant. The predicted form is verified by numerical integration of the equation with a slightly smoothed step function diffusivity.
引用
收藏
页码:531 / 537
页数:7
相关论文
共 10 条
[1]  
[Anonymous], 1991, MATH BIOL
[2]  
BAKER CTH, 1981, NUMERICAL SOLUTION N
[3]   SHARP FRONTS DUE TO DIFFUSION AND STRESS AT THE GLASS-TRANSITION IN POLYMERS [J].
COHEN, DS ;
WHITE, AB .
JOURNAL OF POLYMER SCIENCE PART B-POLYMER PHYSICS, 1989, 27 (08) :1731-1747
[4]   A MATHEMATICAL-MODEL FOR STRESS-DRIVEN DIFFUSION IN POLYMERS [J].
COX, RW ;
COHEN, DS .
JOURNAL OF POLYMER SCIENCE PART B-POLYMER PHYSICS, 1989, 27 (03) :589-602
[5]  
COX RW, IN PRESS SIAM J APPL
[6]  
Fife PC, 1979, MATH ASPECTS REACTIN
[7]   The wave of advance of advantageous genes [J].
Fisher, RA .
ANNALS OF EUGENICS, 1937, 7 :355-369
[8]  
HAYES CK, 1990, THESIS CALTECH PASAD
[9]  
MURRAY J D, 1968, Mathematical Biosciences, V2, P379, DOI 10.1016/0025-5564(68)90025-4
[10]  
NAGYLAKI T, 1975, GENETICS, V80, P595