LOCAL FALSE NEAREST NEIGHBORS AND DYNAMIC DIMENSIONS FROM OBSERVED CHAOTIC DATA

被引:193
作者
ABARBANEL, HDI [1 ]
KENNEL, MB [1 ]
机构
[1] UNIV CALIF SAN DIEGO,SCRIPPS INST OCEANOG,MARINE PHYS LAB,LA JOLLA,CA 92093
来源
PHYSICAL REVIEW E | 1993年 / 47卷 / 05期
关键词
D O I
10.1103/PhysRevE.47.3057
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The time delay reconstruction of the state space of a system from observed scalar data requires a time lag and an integer embedding dimension. The minimum necessary global embedding dimension d(E) may still be larger than the actual dimension of the underlying dynamics d(L). The embedding theorem only guarantees that the attractor of the system is fully unfolded using d(E) greater than 2d(A), with d(A) the fractal attractor dimension. Using the idea of local false nearest neighbors, we discuss methods for determining the integer-valued d(L).
引用
收藏
页码:3057 / 3068
页数:12
相关论文
共 24 条
[1]   LOCAL LYAPUNOV EXPONENTS COMPUTED FROM OBSERVED DATA [J].
ABARBANEL, HDI ;
BROWN, R ;
KENNEL, MB .
JOURNAL OF NONLINEAR SCIENCE, 1992, 2 (03) :343-365
[2]  
ABARBANEL HDI, IN PRESS INT J BIF C
[3]  
[Anonymous], 1991, J NONLINEAR SCI, DOI [10.1007/BF01209065, DOI 10.1007/BF01209065]
[4]   AN IMPROVED METHOD FOR ESTIMATING LIAPUNOV EXPONENTS OF CHAOTIC TIME-SERIES [J].
BRIGGS, K .
PHYSICS LETTERS A, 1990, 151 (1-2) :27-32
[5]   TOPOLOGICAL DIMENSION AND LOCAL COORDINATES FROM TIME-SERIES DATA [J].
BROOMHEAD, DS ;
JONES, R ;
KING, GP .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1987, 20 (09) :L563-L569
[6]   COMPUTING THE LYAPUNOV SPECTRUM OF A DYNAMIC SYSTEM FROM AN OBSERVED TIME-SERIES [J].
BROWN, R ;
BRYANT, P ;
ABARBANEL, HDI .
PHYSICAL REVIEW A, 1991, 43 (06) :2787-2806
[7]  
Brown R., 1990, PHYS REV LETT, V65, P1523
[8]   SYNCHRONIZING CHAOTIC CIRCUITS [J].
CARROLL, TL ;
PECORA, LM .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS, 1991, 38 (04) :453-456
[9]  
CASDAGLI M, 1991, J STAT PHYS, V65, P579
[10]   ERGODIC-THEORY OF CHAOS AND STRANGE ATTRACTORS [J].
ECKMANN, JP ;
RUELLE, D .
REVIEWS OF MODERN PHYSICS, 1985, 57 (03) :617-656