BETA-FUNCTION AND SCHWINGER-FUNCTIONS FOR A MANY FERMIONS SYSTEM IN ONE-DIMENSION - ANOMALY OF THE FERMI-SURFACE

被引:83
作者
BENFATTO, G
GALLAVOTTI, G
PROCACCI, A
SCOPPOLA, B
机构
[1] UNIV ROMA LA SAPIENZA,DIPARTIMENTO FIS,I-00185 ROME,ITALY
[2] UNIV ROMA LA SAPIENZA,DIPARTIMENTO MATEMAT,I-00185 ROME,ITALY
[3] RUTGERS STATE UNIV,DEPT MATH,NEW BRUNSWICK,NJ 08903
关键词
D O I
10.1007/BF02099791
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present a rigorous discussion of the analyticity properties of the beta function and of the effective potential for the theory of the ground state of a one dimensional system of many spinless fermions. We show that their analyticity domain as a function of the running couplings is a polydisk with positive radius bounded below, uniformly in all the cut offs (infrared and ultraviolet) necessary to give a meaning to the formal Schwinger functions. We also prove the vanishing of the scale independent part of the beta function showing that this implies the analyticity of the effective potential and of the Schwinger functions in terms of the bare coupling. Finally we show that the pair Schwinger function has an anomalous long distance behaviour.
引用
收藏
页码:93 / 171
页数:79
相关论文
共 29 条
[1]   PERTURBATION-THEORY OF THE FERMI-SURFACE IN A QUANTUM LIQUID - A GENERAL QUASI-PARTICLE FORMALISM AND ONE-DIMENSIONAL SYSTEMS [J].
BENFATTO, G ;
GALLAVOTTI, G .
JOURNAL OF STATISTICAL PHYSICS, 1990, 59 (3-4) :541-664
[2]   RENORMALIZATION-GROUP AND THE FERMI-SURFACE IN THE LUTTINGER MODEL [J].
BENFATTO, G ;
GALLAVOTTI, G ;
MASTROPIETRO, V .
PHYSICAL REVIEW B, 1992, 45 (10) :5468-5480
[3]  
BRYDGES D, 1986, 1984 SHORT COURS CLU
[4]  
DAVEIGA P, 1991, THESIS U ORSAY
[5]   WARD IDENTITIES AND THE BETA-FUNCTION IN THE LUTTINGER LIQUID [J].
DICASTRO, C ;
METZNER, W .
PHYSICAL REVIEW LETTERS, 1991, 67 (27) :3852-3855
[7]  
FELDER G, 1985, COMMUN MATH PHYS, V102, P549
[8]  
FELDMAN J, 1992, HELV PHYS ACTA, V65, P679
[9]  
FELDMAN J, 1990, HELV PHYS ACTA, V63, P156
[10]   A RENORMALIZABLE FIELD-THEORY - THE MASSIVE GROSS-NEVEU MODEL IN 2 DIMENSIONS [J].
FELDMAN, J ;
MAGNEN, J ;
RIVASSEAU, V ;
SENEOR, R .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1986, 103 (01) :67-103