HANDBOOK SERIES LINEAR ALGEBRA - QR-ALGORITHM FOR REAL HESSENBERG MATRICES

被引:30
作者
MARTIN, RS
PETERS, G
机构
关键词
D O I
10.1007/BF02163331
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
引用
收藏
页码:219 / &
相关论文
共 9 条
[1]   QR TRANSFORMATION - A UNITARY ANALOG TO LR TRANSFORMATION .1. [J].
FRANCIS, J .
COMPUTER JOURNAL, 1961, 4 :265-&
[2]  
Francis J.G.F., 1962, COMPUT J, V4, P332, DOI DOI 10.1093/COMJN1/4.4.332
[3]   UNITARY TRIANGULARIZATION OF A NONSYMMETRIC MATRIX [J].
HOUSEHOLDER, AS .
JOURNAL OF THE ACM, 1958, 5 (04) :339-342
[4]  
Householder AS, 1959, NUMER MATH, V1, P29, DOI [10.1007/BF01386370, DOI 10.1007/BF01386370]
[5]  
Kublanovskaya VN., 1961, Z VYCISL MAT MAT FIZ, V1, P555
[6]   SIMILARITY REDUCTION OF A GENERAL MATRIX TO HESSENBERG FORM [J].
MARTIN, RS ;
WILKINSO.JH .
NUMERISCHE MATHEMATIK, 1968, 12 (05) :349-&
[7]   GLOBAL CONVERGENCE OF BASIC QR ALGORITHM ON HESSENBERG MATRICES [J].
PARLETT, B .
MATHEMATICS OF COMPUTATION, 1968, 22 (104) :803-&
[8]   HANDBOOK SERIES LINEAR ALGEBRA - BALANCING A MATRIX FOR CALCULATION OF EIGENVALUES AND EIGENVECTORS [J].
PARLETT, BN ;
REINSCH, C .
NUMERISCHE MATHEMATIK, 1969, 13 (04) :293-&
[9]  
Wilkinson J. H., 1965, ALGEBRAIC EIGENVALUE