IS DYNAMICAL CHAOS THE SAME PHENOMENON IN CLASSICAL AND QUANTUM-MECHANICAL HAMILTONIAN-SYSTEMS

被引:27
作者
RICE, SA [1 ]
KOSLOFF, R [1 ]
机构
[1] UNIV CHICAGO, JAMES FRANCK INST, CHICAGO, IL 60637 USA
关键词
D O I
10.1021/j100209a007
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
引用
收藏
页码:2153 / 2158
页数:6
相关论文
共 53 条
[1]  
Ali M. K., 1980, Physica D, V1D, P383, DOI 10.1016/0167-2789(80)90019-6
[2]  
ASH A, 1965, INFORMATION THEORY
[3]   KOLMOGOROV ENTROPY AND NUMERICAL EXPERIMENTS [J].
BENETTIN, G ;
GALGANI, L ;
STRELCYN, JM .
PHYSICAL REVIEW A, 1976, 14 (06) :2338-2345
[4]   KOLMOGOROV ENTROPY OF A DYNAMICAL SYSTEM WITH AN INCREASING NUMBER OF DEGREES OF FREEDOM [J].
BENETTIN, G ;
FROESCHLE, C ;
SCHEIDECKER, JP .
PHYSICAL REVIEW A, 1979, 19 (06) :2454-2460
[5]   SEMICLASSICAL MECHANICS IN PHASE SPACE - STUDY OF WIGNERS FUNCTION [J].
BERRY, MV .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1977, 287 (1343) :237-271
[6]   CLOSED ORBITS AND REGULAR BOUND SPECTRUM [J].
BERRY, MV ;
TABOR, M .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1976, 349 (1656) :101-123
[7]  
BERRY MV, 1982, J PHYS CHEM-US, V86
[8]  
Casati G., 1979, LECTURE NOTES PHYSIC, V93, P334, DOI DOI 10.1007/BFB0021757
[9]   SEMICLASSICAL EIGENVALUES FOR NONSEPARABLE SYSTEMS - NONPERTURBATIVE SOLUTION OF HAMILTON-JACOBI EQUATION IN ACTION-ANGLE VARIABLES [J].
CHAPMAN, S ;
GARRETT, BC ;
MILLER, WH .
JOURNAL OF CHEMICAL PHYSICS, 1976, 64 (02) :502-509
[10]   UNIVERSAL INSTABILITY OF MANY-DIMENSIONAL OSCILLATOR SYSTEMS [J].
CHIRIKOV, BV .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1979, 52 (05) :263-379