PATTERN-CLASSIFICATION USING AN EFFICIENT KNNR

被引:20
作者
BELKASIM, SO
SHRIDHAR, M
AHMADI, M
机构
[1] UNIV WINDSOR,DEPT ELECT ENGN,WINDSOR N9B 3P4,ONTARIO,CANADA
[2] GARYOUNIS UNIV,DEPT ELECT ENGN,BENGHAZI,LIBYA
关键词
PATTERN CLASSIFICATION; CLASSIFIER; K-NEAREST NEIGHBOR RULE; CHARACTER/SHAPE RECOGNITION; NEIGHBORHOOD CLASSIFIER;
D O I
10.1016/0031-3203(92)90028-H
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
An efficient method is described to compute the K-nearest neighbour rule (KNNR). The number of distance computations is reduced considerably without any increase in the error rate. Unlike the other techniques, no preprocessing and approximation are involved in this technique which makes it suitable for overlapped classes.
引用
收藏
页码:1269 / 1274
页数:6
相关论文
共 24 条
[1]  
ANDERSON TW, 1958, INTRO MULTIVARIATE S, P19
[2]  
BELKASIM S, 1990, THESIS U WINDSOR WIN
[3]   A FAST CLASSIFIER FOR IMAGE DATA [J].
BRYANT, J .
PATTERN RECOGNITION, 1989, 22 (01) :45-48
[4]   PARALLEL PARSING ALGORITHMS AND VLSI IMPLEMENTATIONS FOR SYNTACTIC PATTERN-RECOGNITION [J].
CHIANG, YT ;
FU, KS .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1984, 6 (03) :302-314
[5]  
EVERITT B, 1974, CLUSTER ANAL, P56
[6]   The nearest neighbor problem in an abstract metric space [J].
Feustel, Charles D. ;
Shapiro, Linda G. .
PATTERN RECOGNITION LETTERS, 1982, 1 (02) :125-128
[7]  
FRIEDMAN JH, 1975, IEEE T COMPUT, V24, P1000, DOI 10.1109/T-C.1975.224110
[8]  
FU K, 1980, DIGITAL PATTERN RECO, P52
[10]  
FU KS, 1973, IEEE T COMPUT, VC 22, P1087, DOI 10.1109/T-C.1973.223654