STUDY OF 3-DIMENSIONAL RAYLEIGH-TAYLOR INSTABILITY IN COMPRESSIBLE FLUIDS THROUGH LEVEL SET METHOD AND PARALLEL COMPUTATION

被引:66
作者
LI, XL
机构
[1] Department of Computer and Information Science, Indiana University-Purdue University at Indianapolis, Indianapolis
来源
PHYSICS OF FLUIDS A-FLUID DYNAMICS | 1993年 / 5卷 / 08期
关键词
D O I
10.1063/1.858816
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
Computation of three-dimensional (3-D) Rayleigh-Taylor instability in compressible fluids is performed on a MIMD computer. A second-order TVD scheme is applied with a fully parallelized algorithm to the 3-D Euler equations. The computational program is implemented for a 3-D study of bubble evolution in the Rayleigh-Taylor instability with varying bubble aspect ratio and for large-scale simulation of a 3-D random fluid interface. The numerical solution is compared with the experimental results by Taylor.
引用
收藏
页码:1904 / 1913
页数:10
相关论文
共 21 条
[1]  
[Anonymous], 1981, ADV APPL MATH, DOI DOI 10.1016/0196-8858(81)90040-3
[2]  
BAKER GR, 1980, PHYS FLUIDS, V23, P28
[3]  
BIRKHOFF G, 1957, J MATH MECH, V6, P769
[4]  
CHERN IL, 1986, J COMPUT PHYS, V62, P83, DOI 10.1016/0021-9991(86)90101-4
[5]  
CHOPP DL, 1992, UNPUB J DIFFER GEOME
[6]   ON STEADY-STATE BUBBLES GENERATED BY TAYLOR INSTABILITY [J].
GARABEDIAN, PR .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1957, 241 (1226) :423-431
[7]   THE DYNAMICS OF BUBBLE-GROWTH FOR RAYLEIGH-TAYLOR UNSTABLE INTERFACES [J].
GARDNER, CL ;
GLIMM, J ;
MCBRYAN, O ;
MENIKOFF, R ;
SHARP, DH ;
ZHANG, Q .
PHYSICS OF FLUIDS, 1988, 31 (03) :447-465
[8]   SUBGRID RESOLUTION OF FLUID DISCONTINUITIES .2. [J].
GLIMM, J ;
MARCHESIN, D ;
MCBRYAN, O .
JOURNAL OF COMPUTATIONAL PHYSICS, 1980, 37 (03) :336-354
[9]   A COMPUTATIONAL MODEL FOR INTERFACES [J].
GLIMM, J ;
MCBRYAN, OA .
ADVANCES IN APPLIED MATHEMATICS, 1985, 6 (04) :422-435
[10]  
GLIMM J, 1992, ADV COMPRESSIBLE TUR, P85