THE STRONG CHROMATIC NUMBER OF A GRAPH

被引:47
作者
ALON, N [1 ]
机构
[1] TEL AVIV UNIV,SACKLER FAC EXACT SCI,DEPT MATH,IL-69978 TEL AVIV,ISRAEL
关键词
D O I
10.1002/rsa.3240030102
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
It is shown that there is an absolute constant c with the following property: For any two graphs G1 = (V, E1) and G2 = (V, E2) on the same set of vertices, where G1 has maximum degree at most d and G2 is a vertex disjoint union of cliques of size cd each, the chromatic number of the graph G = (V, E1 union E2) is precisely cd. The proof is based on probabilistic arguments.
引用
收藏
页码:1 / 7
页数:7
相关论文
共 8 条
[1]   THE LINEAR ARBORICITY OF GRAPHS [J].
ALON, N .
ISRAEL JOURNAL OF MATHEMATICS, 1988, 62 (03) :311-325
[2]   A PARALLEL ALGORITHMIC VERSION OF THE LOCAL LEMMA [J].
ALON, N .
RANDOM STRUCTURES & ALGORITHMS, 1991, 2 (04) :367-378
[3]   AN ALGORITHMIC APPROACH TO THE LOVASZ LOCAL LEMMA .1. [J].
BECK, J .
RANDOM STRUCTURES & ALGORITHMS, 1991, 2 (04) :343-365
[4]  
Bollobas B., 1978, LONDON MATH SOC MONO
[5]  
Erdos P., 1975, C MATH SOC J BOLYAI, V11, P609
[6]   TRANSVERSALS OF VERTEX PARTITIONS IN GRAPHS [J].
FELLOWS, MR .
SIAM JOURNAL ON DISCRETE MATHEMATICS, 1990, 3 (02) :206-215
[7]  
Hajnal A., 1970, COMBIN THEORY APPL, VII, P601
[8]  
SPENCER J, 1987, 10 LECTURES PROBABIL