A COMPACTNESS THEOREM FOR APPROXIMATING THE INVARIANT DENSITIES OF HIGHER DIMENSIONAL TRANSFORMATIONS

被引:2
作者
BOYARSKY, A
LOU, YS
机构
[1] Department of Mathematics, Concordia University, Montreal, H4B 1R6
关键词
D O I
10.1006/jmaa.1993.1060
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let τ be a Jablonski transformation from the n-dimensional unit cube U into itself which has a unique absolutely continuous invariant measure with density function f. Let T denote a family of transformations which approximate τ on finer and finer partitions. The main result of this paper is a compactness theorem on the densities associated with T which allows us to prove that the invariant densities associated with the transformations in T converge weakly to f. © 1993 Academic Press, Inc.
引用
收藏
页码:173 / 190
页数:18
相关论文
共 10 条
[1]  
Candeloro D, 1987, ATTI SEMIN MAT FIS, V35, P33
[2]   COMPACTNESS OF INVARIANT DENSITIES FOR FAMILIES OF EXPANDING, PIECEWISE MONOTONIC TRANSFORMATIONS [J].
GORA, P ;
BOYARSKY, A .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1989, 41 (05) :855-869
[3]   ON FUNCTIONS OF BOUNDED VARIATION IN HIGHER DIMENSIONS [J].
GORA, P ;
BOYARSKY, A .
AMERICAN MATHEMATICAL MONTHLY, 1992, 99 (02) :159-160
[4]   ABSOLUTELY CONTINUOUS INVARIANT-MEASURES FOR PIECEWISE EXPANDING C-2 TRANSFORMATIONS IN RN [J].
GORA, P ;
BOYARSKY, A .
ISRAEL JOURNAL OF MATHEMATICS, 1989, 67 (03) :272-286
[5]  
Jablo~nski M., 1983, ANN POL MATH, V2, P185
[6]  
KELLER G, 1979, CR ACAD SCI A MATH, V289, P625
[7]   EXISTENCE OF INVARIANT MEASURES FOR PIECEWISE MONOTONIC TRANSFORMATIONS [J].
LASOTA, A ;
YORKE, JA .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1973, 186 (459) :481-488
[8]  
LI TY, 1976, J APPROX THEORY, V17, P173
[9]  
LOU YS, 1991, THESIS CONCORDIA U
[10]  
ULAM S, 1960, PROBLEMS MATH