LOCAL EXPONENTIAL DIVERGENCE PLOT AND OPTIMAL EMBEDDING OF A CHAOTIC TIME-SERIES

被引:75
作者
GAO, JB
ZHENG, ZM
机构
[1] Laboratory for Nonlinear Mechanics of Continuous Media, Institute of Mechanics, Chinese Academy of Sciences, Beijing
关键词
D O I
10.1016/0375-9601(93)90913-K
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
we propose here a local exponential divergence plot which is capable of providing a new means of characterizing chaotic time series. The suggested plot defines a time dependent exponent LAMBDA and a ''plus'' exponent LAMBDA+ which serves as a criterion for estimating simultaneously the minimal acceptable embedding dimension, the proper delay time and the largest Lyapunov exponent.
引用
收藏
页码:153 / 158
页数:6
相关论文
共 25 条
[1]   LOCAL LYAPUNOV EXPONENTS COMPUTED FROM OBSERVED DATA [J].
ABARBANEL, HDI ;
BROWN, R ;
KENNEL, MB .
JOURNAL OF NONLINEAR SCIENCE, 1992, 2 (03) :343-365
[2]   ESTIMATING THE EMBEDDING DIMENSION [J].
ALEKSIC, Z .
PHYSICA D, 1991, 52 (2-3) :362-368
[3]  
[Anonymous], 1991, J NONLINEAR SCI, DOI [10.1007/BF01209065, DOI 10.1007/BF01209065]
[4]   ESTIMATION OF THE NUMBER OF DEGREES OF FREEDOM FROM CHAOTIC TIME-SERIES [J].
CENYS, A ;
PYRAGAS, K .
PHYSICS LETTERS A, 1988, 129 (04) :227-230
[5]   ERGODIC-THEORY OF CHAOS AND STRANGE ATTRACTORS [J].
ECKMANN, JP ;
RUELLE, D .
REVIEWS OF MODERN PHYSICS, 1985, 57 (03) :617-656
[6]   INDEPENDENT COORDINATES FOR STRANGE ATTRACTORS FROM MUTUAL INFORMATION [J].
FRASER, AM ;
SWINNEY, HL .
PHYSICAL REVIEW A, 1986, 33 (02) :1134-1140
[7]   MEASURING THE STRANGENESS OF STRANGE ATTRACTORS [J].
GRASSBERGER, P ;
PROCACCIA, I .
PHYSICA D, 1983, 9 (1-2) :189-208
[8]   ESTIMATION OF THE KOLMOGOROV-ENTROPY FROM A CHAOTIC SIGNAL [J].
GRASSBERGER, P ;
PROCACCIA, I .
PHYSICAL REVIEW A, 1983, 28 (04) :2591-2593
[10]   2-DIMENSIONAL MAPPING WITH A STRANGE ATTRACTOR [J].
HENON, M .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1976, 50 (01) :69-77