HOPF BIFURCATION - STABILITY RESULT AND APPLICATION

被引:15
作者
STECH, HW [1 ]
机构
[1] VIRGINIA POLYTECH INST & STATE UNIV,DEPT MATH,BLACKSBURG,VA 24061
关键词
D O I
10.1016/0022-247X(79)90207-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
[No abstract available]
引用
收藏
页码:525 / 546
页数:22
相关论文
共 12 条
[1]   INTEGRAL AVERAGING AND BIFURCATION [J].
CHOW, SN ;
MALLETPARET, J .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1977, 26 (01) :112-159
[2]   TIME DELAYS IN SINGLE SPECIES GROWTH-MODELS [J].
CUSHING, JM .
JOURNAL OF MATHEMATICAL BIOLOGY, 1977, 4 (03) :257-264
[3]  
CUSHING JM, LECTURE NOTES BIOMAT
[4]   STABILITY OF STATIONARY STATE OF A POPULATION-GROWTH EQUATION WITH TIME-LAG [J].
HADELER, KP .
JOURNAL OF MATHEMATICAL BIOLOGY, 1976, 3 (02) :197-201
[5]  
HALE JK, 1977, APPLIED MATH SCI, V3
[6]  
HALE JK, 1969, PURE APPLIED MATH, V21
[7]  
May, 2001, STABILITY COMPLEXITY, DOI 10.1515/9780691206912
[9]   EXISTENCE OF A NON-CONSTANT PERIODIC-SOLUTION OF A NONLINEAR AUTONOMOUS FUNCTIONAL DIFFERENTIAL EQUATION REPRESENTING GROWTH OF A SINGLE SPECIES POPULATION [J].
WALTHER, HO .
JOURNAL OF MATHEMATICAL BIOLOGY, 1975, 1 (03) :227-240
[10]   TRANSCENDENTAL EQUATION IN STABILITY ANALYSIS OF A POPULATION-GROWTH MODEL [J].
WALTHER, HO .
JOURNAL OF MATHEMATICAL BIOLOGY, 1976, 3 (02) :187-195