SYMPLECTIC STRUCTURES ASSOCIATED TO LIE-POISSON GROUPS

被引:124
作者
ALEKSEEV, AY [1 ]
MALKIN, AZ [1 ]
机构
[1] UPPSALA UNIV,INST THEORET PHYS,S-75108 UPPSALA,SWEDEN
关键词
D O I
10.1007/BF02105190
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The Lie-Poisson analogues of the cotangent bundle and coadjoint orbits of a Lie group are considered. For the natural Poisson brackets the symplectic leaves in these manifolds are classified and the corresponding symplectic forms are described. Thus the construction of the Kirillov symplectic form is generalized for Lie-Poisson groups.
引用
收藏
页码:147 / 173
页数:27
相关论文
共 15 条
[1]   PATH INTEGRAL QUANTIZATION OF THE COADJOINT ORBITS OF THE VIRASORO GROUP AND 2-D GRAVITY [J].
ALEKSEEV, A ;
SHATASHVILI, S .
NUCLEAR PHYSICS B, 1989, 323 (03) :719-733
[2]  
AROLD VI, 1980, MATH METHODS CLASSIC
[3]  
DECONCINI C, 1990, PROG MATH, V92, P471
[4]  
Drinfeld V.G., 1986, P INT C MATH, V1, P789
[5]  
Drinfeld V. G., COMMUNICATION
[6]  
Faddeev L.D., 1989, ALGEBRA ANALIZ, P178
[7]  
GAWEDZKI K, 1991, IHESP9159 PREPR
[8]  
JURCO B, 1992, LMUTPW19923 PREPR
[9]  
Kirillov A.A., 1976, GRUNDLEHREN MATH WIS, V220
[10]  
LU JH, 1989, CR ACAD SCI I-MATH, V309, P951