UNIFORM QUADRATIC VARIATION FOR GAUSSIAN-PROCESSES

被引:16
作者
ADLER, RJ
PYKE, R
机构
[1] UNIV WASHINGTON,DEPT MATH,GN-50,SEATTLE,WA 98195
[2] TECHNION ISRAEL INST TECHNOL,FAC IND ENGN & MANAGEMENT,IL-32000 HAIFA,ISRAEL
基金
美国国家科学基金会;
关键词
QUADRATIC VARIATION; GAUSSIAN PROCESSES; BROWNIAN SHEET;
D O I
10.1016/0304-4149(93)90044-5
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We study the uniform convergence of the quadratic variation of Gaussian processes, taken over large families of curves in the parameter space. A simple application of our main result shows that the quadratic variation of the Brownian sheet along all rays issuing from a point in [0, 1]2 converges uniformly (with probability one) as long as the meshes of the partitions defining the quadratic variation do not decrease too slowly. Another application shows that previous quadratic variation results for Gaussian processes on [0, 1] actually hold uniformly over large classes of partitioning sets.
引用
收藏
页码:191 / 209
页数:19
相关论文
共 13 条
[1]  
ADLER RJ, 1990, IMS LECTURE NOTES MO, V12
[2]  
Baxter G., 1956, P AM MATH SOC, V7, P522
[3]  
BORELL C, 1975, INVENT MATH, V30, P205
[4]  
Dudley R. M., 1967, J FUNCT ANAL, V1, P290, DOI DOI 10.1016/0022-1236(67)90017-1
[5]   SAMPLE FUNCTIONS OF GAUSSIAN PROCESS [J].
DUDLEY, RM .
ANNALS OF PROBABILITY, 1973, 1 (01) :66-103
[6]  
Fernandez de la Vega W., 1974, ANN PROBAB, V2, P551, DOI [10.1214/aop/1176996675, DOI 10.1214/AOP/1176996675]
[7]  
Gladyshev EG., 1961, THEOR PROBAB APPL, V6, P57
[8]   BOUND ON TAIL PROBABILITIES FOR QUADRATIC FORMS IN INDEPENDENT RANDOM VARIABLES [J].
HANSON, DL ;
WRIGHT, FT .
ANNALS OF MATHEMATICAL STATISTICS, 1971, 42 (03) :1079-&
[9]   QUADRATIC VARIATION OF PROCESSES WITH GAUSSIAN INCREMENTS [J].
KLEIN, R ;
GINE, E .
ANNALS OF PROBABILITY, 1975, 3 (04) :716-721
[10]  
Kolmogorov AN, 1961, AM MATH SOC TRANSL, V2, P277