USING INDUCTIVE LEARNING TO DETERMINE FUZZY RULES FOR DYNAMIC-SYSTEMS

被引:5
作者
SRINIVASAN, A [1 ]
BATUR, C [1 ]
CHAN, CC [1 ]
机构
[1] UNIV AKRON,AKRON,OH 44325
关键词
DECISION TREES; DYNAMIC SYSTEMS; FUZZY MODELING; INDUCTIVE LEARNING SYSTEMS; PRODUCTION RULES; REFERENCE FUZZY SETS;
D O I
10.1016/0952-1976(93)90068-9
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper describes a fuzzy model-building methodology. Process input-output data are quantized by fuzzy reference membership functions. Membership values are determined for each data point and only the membership function that generates the maximum membership value is used. The name of membership functions corresponding to maximum values are fed into an inductive learning algorithm and the fuzzy rules are determined. The methodology is applied to fuzzy modeling of a dynamic system.
引用
收藏
页码:257 / 264
页数:8
相关论文
共 18 条
[1]  
[Anonymous], 1992, NEURAL NETWORKS FUZZ
[2]  
[Anonymous], 1981, PATTERN RECOGN
[3]  
Batur C., 1991, Engineering Applications of Artificial Intelligence, V4, P359, DOI 10.1016/0952-1976(91)90004-P
[4]  
Breiman L, 2017, CLASSIFICATION REGRE, P368, DOI 10.1201/9781315139470
[5]   INCREMENTAL LEARNING OF PRODUCTION RULES FROM EXAMPLES UNDER UNCERTAINTY - A ROUGH SET APPROACH [J].
CHAN, CC .
INTERNATIONAL JOURNAL OF SOFTWARE ENGINEERING AND KNOWLEDGE ENGINEERING, 1991, 1 (04) :439-461
[6]   NONLINEAR-SYSTEM IDENTIFICATION USING NEURAL NETWORKS [J].
CHEN, S ;
BILLINGS, SA ;
GRANT, PM .
INTERNATIONAL JOURNAL OF CONTROL, 1990, 51 (06) :1191-1214
[7]  
FISHER DH, 1988, 5TH P INT C MACH LEA, P22
[8]  
Mingers J., 1989, Machine Learning, V4, P227, DOI 10.1023/A:1022604100933
[9]  
NIBLETT T, 1987, BRIT COMPUTER SOC WO, V3
[10]   AN IDENTIFICATION ALGORITHM IN FUZZY RELATIONAL SYSTEMS [J].
PEDRYCZ, W .
FUZZY SETS AND SYSTEMS, 1984, 13 (02) :153-167