POINT CYCLIC REDUCTIONS FOR ELLIPTIC BOUNDARY-VALUE PROBLEMS .1. CONSTANT-COEFFICIENT CASE

被引:4
作者
DETYNA, E
机构
[1] Computer Science Department, The University of Reading, England, Whiteknights Park
关键词
D O I
10.1016/0021-9991(79)90016-0
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
A new fast N2-algorithm" has been developed for solving two-dimensional elliptical partial differential equations. It employs point cylic reductions which reduce the number of equations by a factor of 4 at each step. In this first part the constant-coefficient case with Dirichlet boundary conditions is considered. © 1979."
引用
收藏
页码:204 / 216
页数:13
相关论文
共 7 条
[1]   DIRECT METHODS FOR SOLVING POISSONS EQUATIONS [J].
BUZBEE, BL ;
GOLUB, GH ;
NIELSON, CW .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1970, 7 (04) :627-&
[2]  
HOCKNEY RW, 1978, RCS94 READ U COMP SC
[3]  
HOCKNEY RW, 1969, METHODS COMPUTATIONA, P131
[4]  
LORENZ EN, 1976, MON WEATHER REV, V104, P961, DOI 10.1175/1520-0493(1976)104<0961:ARPFID>2.0.CO
[5]  
2
[6]   METHODS OF CYCLIC REDUCTION, FOURIER-ANALYSIS AND FACR ALGORITHM FOR DISCRETE SOLUTION OF POISSONS EQUATION ON A RECTANGLE [J].
SWARZTRAUBER, PN .
SIAM REVIEW, 1977, 19 (03) :490-501
[7]  
TEMPERTON C, 1977, 14 EUR CTR MED RANG