ON RECOMBINING ITERANTS IN MULTIGRID ALGORITHMS AND PROBLEMS WITH SMALL ISLANDS

被引:28
作者
BRANDT, A [1 ]
MIKULINSKY, V [1 ]
机构
[1] GESELL MATH & DATENVERARBEITUNG GMBH,W-5205 ST AUGUSTIN 1,GERMANY
关键词
MULTIGRID; POLYNOMIAL ACCELERATION; SMALL ISLANDS; NEARLY SINGULAR PROBLEMS;
D O I
10.1137/0916002
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This article deals with nearly singular problems and with problems having small ''islands'' or other small features not visible on a coarse grid, in which cases usual multigrid solvers converge slowly or even diverge. In these and many other problems, the main difficulty is related to a few badly approximated components. The numerical experiments reported below show that by recombining multigrid iterants, such components are eliminated effectively and the usual multigrid asymptotic convergence rate is restored.
引用
收藏
页码:20 / 28
页数:9
相关论文
共 9 条
[1]  
ASHBY SF, 1990, SIAM J NUMER ANAL, V27, P1547
[2]   FERMION SIMULATIONS USING PARALLEL TRANSPORTED MULTIGRID [J].
BENAV, R ;
BRANDT, A ;
HARMATZ, M ;
KATZNELSON, E ;
LAUWERS, PG ;
SOLOMON, S ;
WOLOWESKY, K .
PHYSICS LETTERS B, 1991, 253 (1-2) :185-192
[3]  
BRANDT A, 1985, 2ND EUR C MULTGR MET
[4]  
BRANDT A, 1984, MULTIGRID TECNIQUES
[5]  
HAGEMAN LA, 1981, APPLIED ITERATIVE ME, pCH3
[6]  
Mesina M., 1977, Computer Methods in Applied Mechanics and Engineering, V10, P165, DOI 10.1016/0045-7825(77)90004-4
[7]  
MIKULINSKY V, 1993, THESIS WEIZMAN I SCI
[8]  
SAAD Y, 1986, SIAM J SCI STAT COMP, V7, P856, DOI 10.1137/0907058
[9]  
TAASAN S, 1984, THESIS WEIZMANN I SC