ALGEBRAIC INVARIANTS OF KNOTS AND DISORDERED POTTS-MODEL

被引:28
作者
GROSBERG, A [1 ]
NECHAEV, S [1 ]
机构
[1] LD LANDAU THEORET PHYS INST,MOSCOW 117940,USSR
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 1992年 / 25卷 / 17期
关键词
D O I
10.1088/0305-4470/25/17/023
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We propose the reformulation of the Kauffman bracket invariant of the knot in terms of statistical mechanics of the 2D disordered Potts model. This allows us to put the question of the determination of knot entropy (or of the probability of an arbitrary knot formation) in terms of the usual statistical mechanics. To demonstrate the possibilities of our approach we give constructive estimation for the trivial knot formation probability for a long strongly contracted closed random path confined in a thin slit. We use the mean-field approximation for the free energy of the Potts system at the point of the transition from the paramagnetic phase to the spin-glass one.
引用
收藏
页码:4659 / 4672
页数:14
相关论文
共 28 条
[1]  
Baxter R.J., 2007, EXACTLY SOLVED MODEL
[2]   MEAN-FIELD THEORY AND FLUCTUATIONS IN POTTS SPIN-GLASSES .1. [J].
CWILICH, G ;
KIRKPATRICK, TR .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1989, 22 (22) :4971-4987
[3]  
DAVID D, 1988, J STAT PHYS, V51, P327
[4]  
DESCLOZEAUX J, 1979, J PHYSIQUE, V40, P669
[5]  
FRELICH J, 1989, COMMUN MATH PHYS, V126, P167
[6]  
GUADARINI E, 1989, CERNTH541989 PREPR
[7]   ON TWO-DIMENSIONAL SELF-AVOIDING RANDOM-WALKS [J].
GUTTMANN, AJ .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1984, 17 (02) :455-468
[8]   ON KNOT INVARIANTS RELATED TO SOME STATISTICAL MECHANICAL MODELS [J].
JONES, VFR .
PACIFIC JOURNAL OF MATHEMATICS, 1989, 137 (02) :311-334
[9]   A POLYNOMIAL INVARIANT FOR KNOTS VIA VONNEUMANN-ALGEBRAS [J].
JONES, VFR .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1985, 12 (01) :103-111
[10]   AN INVARIANT OF REGULAR ISOTOPY [J].
KAUFFMAN, LH .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1990, 318 (02) :417-471