ESTIMATION OF PARAMETERS IN THE SINGULAR GAUSS-MARKOFF MODEL

被引:13
作者
RAO, CR [1 ]
机构
[1] INDIAN STAT INST, CALCUTTA 700035, W BENGAL, INDIA
来源
COMMUNICATIONS IN STATISTICS PART A-THEORY AND METHODS | 1979年 / 8卷 / 14期
关键词
Gauss-Markoff model; singular dispersion matrix; unbiased estimation;
D O I
10.1080/03610927908827835
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Consider the Gauss-Markoff model (Y, Xβ σ2V) in the usual notation (Rao, 1973a, p. 294), If V is singular, there exists a matrix N such that N'Y has zero covariance, The minimum variance unbiased estimator of an estimable parametric function pis obtained in the wider class of (non-linear) unbiased estimators of the form f(N'Y) + Y'g(N'Y) where f is a scalar and g is a vector function. © 1979, Taylor & Francis Group, LLC. All rights reserved.
引用
收藏
页码:1353 / 1358
页数:6
相关论文
共 8 条
[1]   WEAK GENERALIZED INVERSES AND MINIMUM VARIANCE LINEAR UNBIASED ESTIMATION [J].
GOLDMAN, AJ ;
ZELEN, M .
JOURNAL OF RESEARCH OF THE NATIONAL BUREAU OF STANDARDS SECTION B-MATHEMATICS AND MATHEMATICAL, 1964, B 68 (04) :151-+
[2]  
Kempthorne O., 1976, ESSAYS PROBABILITY S, P203
[3]  
KOLMOGOROV AN, 1956, F PROBABILITY
[4]  
MITRA SK, 1969, SANKHYA A, P281
[5]  
Rao C.R., 1973, J MULTIVARIATE ANAL, V3, P276, DOI [10.1016/0047-259X(73)90042-0, DOI 10.1016/0047-259X(73)90042-0]
[6]  
RAO CR, 1973, LINEAR STATISTICAL I
[7]   LINEAR SPACES AND MINIMUM VARIANCE UNBIASED ESTIMATION [J].
SEELY, J ;
ZYSKIND, G .
ANNALS OF MATHEMATICAL STATISTICS, 1971, 42 (02) :691-&
[8]   ON CANONICAL FORMS NON-NEGATIVE COVARIANCE MATRICES AND BEST AND SIMPLE LEAST SQUARES LINEAR ESTIMATORS IN LINEAR MODELS [J].
ZYSKIND, G .
ANNALS OF MATHEMATICAL STATISTICS, 1967, 38 (04) :1092-&