SCALING FOR NUMERICAL STABILITY IN GAUSSIAN ELIMINATION

被引:128
作者
SKEEL, RD
机构
[1] Department of Computer Science, 222 Digital Computer Laboratory, University of Illinois, Urbana-Champaign, Urbana
关键词
backward error analysts; equiliberation; Gaussmn elimination; ill conditioning; numerical stability; pivoting; roundoff analysys; scaling; sparse Gaussmn elimination;
D O I
10.1145/322139.322148
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Roundoff error m the solution of hnear algebraic systems is stud,ed using a more reahstsc notion of what st means to perturb a problem, namely, that each datum is subject to a relatwely small change This is particularly appropriate for sparse linear systems The condition number :s determined for th:s approach The effect of scahng on the stabdlty of Gaussmn ellmmat,on is stud:ed, and st is d:scovered that the proper way to scale a system depends on the right-hand s:de However, ff only the norm of the error is of concern, then there is a good way to scale that does not depend on the right-hand side. © 1979, ACM. All rights reserved.
引用
收藏
页码:494 / 526
页数:33
相关论文
共 23 条
[1]   GENAUIGKEITSFRAGEN BEI DER LOSUNG LINEARER GLEICHUNGSSYSTEME [J].
BAUER, FL .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1966, 46 (07) :409-&
[2]  
BAUER FL, 1960, IFIP 1959, P109
[3]  
BAUER FL, 1963, NUMER MATH, V5, P78
[4]  
Curtis A. R., 1972, Journal of the Institute of Mathematics and Its Applications, V10, P118
[5]  
Forsythe G.E., 1955, P AM MATH SOC, V6, P340
[6]  
FORSYTHE GE, 1967, COMPUTER SOLUTION LI
[7]  
GEAR CW, 1975, NUMERICAL ERRORS SPA
[8]  
Jankowski M., 1977, BIT (Nordisk Tidskrift for Informationsbehandling), V17, P303, DOI 10.1007/BF01932150
[9]   NUMERICAL LINEAR ALGEBRA [J].
KAHAN, W .
CANADIAN MATHEMATICAL BULLETIN, 1966, 9 (06) :757-&
[10]   AUTOMATIC A PRIORI ROUND-OFF ANALYSIS .1. ARITHMETIC CONDITIONS [J].
MILLER, W .
COMPUTING, 1972, 10 (1-2) :97-106