SOLVABLE MODEL OF SPATIOTEMPORAL CHAOS

被引:19
作者
HANSEL, D
SOMPOLINSKY, H
机构
[1] HEBREW UNIV JERUSALEM,RACAH INST PHYS,IL-91904 JERUSALEM,ISRAEL
[2] HEBREW UNIV JERUSALEM,CTR NEURAL COMPUTAT,IL-91904 JERUSALEM,ISRAEL
关键词
D O I
10.1103/PhysRevLett.71.2710
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A continuous time dynamic model of a d-dimensional lattice of coupled localized m-component chaotic elements is solved exactly in the limit m --> infinity. A self-consistent nonlinear partial differential equation for the correlations in space and time is derived. Near the onset of spatiotemporal disorder there are solutions that exhibit a novel space-time symmetry: the corresponding correlations axe invariant to rotations in the d+1 space-time variables. For d < 3 the correlations decay exponentially at large distances or long times. For d greater-than-or-equal-to 3 the correlations exhibit a power law decay as the inverse of the distance or time.
引用
收藏
页码:2710 / 2713
页数:4
相关论文
共 16 条
[1]   ON EXISTENCE OF NONTRIVIAL SOLUTIONS FOR THE EQUATION DELTA-U-U+U3=0 [J].
ALFIMOV, GL ;
ELEONSKY, VM ;
KULAGIN, NE ;
LERMAN, LM ;
SILIN, VP .
PHYSICA D, 1990, 44 (1-2) :168-177
[2]  
Aranson I. S., 1986, Soviet Physics - JETP, V63, P1000
[3]   SELF-ORGANIZED CRITICALITY [J].
BAK, P ;
TANG, C ;
WIESENFELD, K .
PHYSICAL REVIEW A, 1988, 38 (01) :364-374
[4]   COHERENCE, CHAOS, AND BROKEN SYMMETRY IN CLASSICAL, MANY-BODY DYNAMIC-SYSTEMS [J].
BOHR, T ;
GRINSTEIN, G ;
HE, Y ;
JAYAPRAKASH, C .
PHYSICAL REVIEW LETTERS, 1987, 58 (21) :2155-2158
[5]   SPATIO-TEMPORAL INTERMITTENCY IN COUPLED MAP LATTICES [J].
CHATE, H ;
MANNEVILLE, P .
PHYSICA D, 1988, 32 (03) :409-422
[6]   SELF-TRAPPING OF OPTICAL BEAMS [J].
CHIAO, RY ;
GARMIRE, E ;
TOWNES, CH .
PHYSICAL REVIEW LETTERS, 1964, 13 (15) :479-&
[7]   PATTERN-FORMATION OUTSIDE OF EQUILIBRIUM [J].
CROSS, MC ;
HOHENBERG, PC .
REVIEWS OF MODERN PHYSICS, 1993, 65 (03) :851-1112
[8]  
CRUTCHFIELD J, 1987, DIRECTION CHAOS
[9]   TRANSITION TO TURBULENCE VIA SPATIOTEMPORAL INTERMITTENCY IN ONE-DIMENSIONAL RAYLEIGH-BENARD CONVECTION [J].
DAVIAUD, F ;
BONETTI, M ;
DUBOIS, M .
PHYSICAL REVIEW A, 1990, 42 (06) :3388-3399
[10]   PHASE-TRANSITIONS IN COUPLED MAP LATTICES [J].
GRASSBERGER, P ;
SCHREIBER, T .
PHYSICA D, 1991, 50 (02) :177-188