SIMULATION OF STOCHASTIC FIELDS BY STATISTICAL PRECONDITIONING

被引:64
作者
YAMAZAKI, F [1 ]
SHINOZUKA, M [1 ]
机构
[1] PRINCETON UNIV,DEPT CIVIL ENGN & OPERAT RES,PRINCETON,NJ 08544
来源
JOURNAL OF ENGINEERING MECHANICS-ASCE | 1990年 / 116卷 / 02期
关键词
D O I
10.1061/(ASCE)0733-9399(1990)116:2(268)
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
A new stochastic fields simulation technique that can realize prescribed means and covariances with a substantially smaller sample size than that of other existing methods is developed. The method utilizes the modal decomposition of the covariance matrix of the correlated random vector and the spectral representation of random processes. The decreasing feature of the eigenvalues of the covariance matrix and the orthogonality of the trigonometric functions are taken advantage of for generating sets of independent random variables. The generated discretized stochastic field is Gaussian by virtue of the central limit theorem. The sample functions of the discretized stochastic field precisely reproduces, when ensemble- averaged, the prescribed zero-mean and covariance function. Hence, the proposed statistical preconditioning technique will, in general, dramatically reduce the large computational effort that Monte Carlo simulation involving stochastic fields would otherwise entail. © ASCE.
引用
收藏
页码:268 / 287
页数:20
相关论文
共 24 条
[1]  
Astill C. J., 2007, J STRUCTURAL MECHANI, V1, P63, DOI DOI 10.1080/03601217208905333
[2]  
BAZANT ZP, 1985, J STRUCT ENG-ASCE, V111, P1113
[3]  
Der Kiureghian A., 1988, PROBAB ENG MECH, V3, P83, DOI [10.1016/0266-8920(88)90019-7, DOI 10.1016/0266-8920(88)90019-7]
[4]  
Ditlevsen O., 1981, UNCERTAINTY MODELING
[5]  
Liu WK., 1987, PROBALISTIC ENG MECH, V2, P201, DOI [10.1016/0266-8920(87)90010-5, DOI 10.1016/0266-8920(87)90010-5]
[6]   A COMPARISON OF THREE METHODS FOR SELECTING VALUES OF INPUT VARIABLES IN THE ANALYSIS OF OUTPUT FROM A COMPUTER CODE [J].
MCKAY, MD ;
BECKMAN, RJ ;
CONOVER, WJ .
TECHNOMETRICS, 1979, 21 (02) :239-245
[7]   ARMA MODEL FOR TWO-DIMENSIONAL PROCESSES [J].
NAGANUMA, T ;
DEODATIS, G ;
SHINOZUKA, M .
JOURNAL OF ENGINEERING MECHANICS-ASCE, 1987, 113 (02) :234-251
[8]  
PARLETT B. N., 1980, SYMMETRIC EIGENVALUE, DOI DOI 10.1137/1.9781611971163
[9]  
PRIESTLEY MB, 1965, J ROY STAT SOC B, V27, P204
[10]   2-POINT ESTIMATES IN PROBABILITIES [J].
ROSENBLUETH, E .
APPLIED MATHEMATICAL MODELLING, 1981, 5 (05) :329-335