A CLASS OF AFFINE WIGNER FUNCTIONS WITH EXTENDED COVARIANCE PROPERTIES

被引:73
作者
BERTRAND, J
BERTRAND, P
机构
[1] CNRS,UPR 177,F-75005 PARIS,FRANCE
[2] OFF NATL ETUD & RECH AEROSP,F-92322 CHATILLON,FRANCE
关键词
D O I
10.1063/1.529570
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Affine Wigner functions are phase space representations based on the affine group in place of the usual Weyl-Heisenberg group of quantum mechanics. Such representations are relevant to the time-frequency analysis of real signals. An interesting family is singled out by the requirement of covariance with respect to each solvable three-parameter group containing the affine group. Explicit forms are given in each case and properties such as unitarity and localization are discussed. Some particular distributions are recovered.
引用
收藏
页码:2515 / 2527
页数:13
相关论文
共 27 条
[1]  
BERTRAND J, 1984, CR ACAD SCI I-MATH, V299, P635
[2]  
Bertrand J., 1989, WAVELETS, P164
[3]  
BERTRAND J, 1989, 17TH P INT C GROUP T
[4]  
Cartan E., 1932, ANN MAT PUR APPL, V11, P17
[5]   TIME FREQUENCY-DISTRIBUTIONS - A REVIEW [J].
COHEN, L .
PROCEEDINGS OF THE IEEE, 1989, 77 (07) :941-981
[6]   GENERALIZED PHASE-SPACE DISTRIBUTION FUNCTIONS [J].
COHEN, L .
JOURNAL OF MATHEMATICAL PHYSICS, 1966, 7 (05) :781-&
[7]  
Gabor D, 1946, J I ELECT ENG 3, V93, P429, DOI DOI 10.1049/JI-3-2.1946.0074
[8]   THE METAPLECTIC GROUP WITHIN THE HEISENBERG-WEYL RING [J].
GARCIABULLE, M ;
LASSNER, W ;
WOLF, KB .
JOURNAL OF MATHEMATICAL PHYSICS, 1986, 27 (01) :29-36
[9]  
Gelfand I. M., 1964, GENERALIZED FUNCTION, VIV
[10]  
Jacobson N., 1962, LIE ALGEBRAS