THE SPHERE PACKING PROBLEM IN QUASI-CRYSTALS

被引:22
作者
SMITH, AP
机构
[1] Materials Science Division, Argonne National Laboratory, Argonne
关键词
D O I
10.1016/0022-3093(93)90353-Y
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The higher-dimensional viewpoint is used to analyze the problem of finding quasicrystals that pack spheres well, and this implies a search for 'maximal' acceptance domains. The basic constraints are symmetry and non-intersection under certain perpendicular-space translations and the maximal convex domains are just the polyhedral Voronoi domains. When disconnected pieces are allowed, significant improvement in packing fraction is possible, and inflation rules for a dodecagonal triangle-square tiling produce beautifully intricate disconnected acceptance domains. A numerical approach to acceptance domain maximization produces similar structures, and also provides a lower bound for the 'deterministic entropy' associated with the many different allowed maximal domains.
引用
收藏
页码:258 / 263
页数:6
相关论文
共 20 条
  • [1] ICOSAHEDRAL ALUMINUM TRANSITION-METAL ALLOYS
    BANCEL, PA
    HEINEY, PA
    [J]. PHYSICAL REVIEW B, 1986, 33 (12): : 7917 - 7922
  • [2] COCKAYNE E, COMMUNICATION
  • [3] Conway J.H., 1988, SPHERE PACKINGS LATT
  • [4] DIVINCENZO DP, UNPUB
  • [5] FRIEDEL J, 1988, HELV PHYS ACTA, V61, P538
  • [6] GAHLER F, 1988, THESIS SWISS FED I T
  • [7] CELL GEOMETRY FOR CLUSTER-BASED QUASI-CRYSTAL MODELS
    HENLEY, CL
    [J]. PHYSICAL REVIEW B, 1991, 43 (01): : 993 - 1020
  • [8] SPHERE PACKINGS AND LOCAL ENVIRONMENTS IN PENROSE TILINGS
    HENLEY, CL
    [J]. PHYSICAL REVIEW B, 1986, 34 (02): : 797 - 816
  • [9] Laves F., 1956, THEORY ALLOY PHASES, P124
  • [10] Levitov L. S., 1991, QUASICRYSTALS STATE, P239