CRYSTAL-STRUCTURE OF CHICKEN LIVER DIHYDROFOLATE-REDUCTASE COMPLEXED WITH NADP+ AND BIOPTERIN

被引:76
作者
MCTIGUE, MA
DAVIES, JF
KAUFMAN, BT
KRAUT, J
机构
[1] UNIV CALIF SAN DIEGO,DEPT CHEM,LA JOLLA,CA 92093
[2] NIDDK,BETHESDA,MD 20892
关键词
D O I
10.1021/bi00147a009
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The 2.2-angstrom crystal structure of chicken liver dihydrofolate reductase (EC 1.5.1.3, DHFR) has been solved as a ternary complex with NADP+ and biopterin (a poor substrate). The space group and unit cell are isomorphous with the previously reported structure of chicken liver DHFR complexed with NADPH and phenyltriazine [Volz, K. W., Matthews, D. A., Alden, R. A., Freer, S. T., Hansch, C., Kaufman. B. T., & Kraut, J. (1982) J. Biol. Chem. 257, 2528-2536]. The structure contains an ordered water molecule hydrogen-bonded to both hydroxyls of the biopterin dihydroxypropyl group as well as to O4 and N5 of the biopterin pteridine ring. This water molecule, not observed in previously determined DHFR structures, is positioned to complete a proposed route for proton transfer from the side-chain carboxylate of E30 to N5 of the pteridine ring. Protonation of N5 is believed to occur during the reduction of dihydropteridine substrates. The positions of the NADP+ nicotinamide and biopterin pteridine rings are quite similar to the nicotinamide and pteridine ring positions in the Escherichia coli DHFR.NADP+.folate complex [Bystroff, C., Oatley, S. J., & Kraut, J. (1990) Biochemistry 29, 3263 3277], suggesting that the reduction of biopterin and the reduction of folate occur via similar mechanisms, that the binding geometry of the nicotinamide and pteridine rings is conserved between DHFR species, and that the p-aminobenzoylglutamate moiety of folate is not required for correct positioning of the pteridine ring in ground-state ternary complexes. Instead, binding of the p-aminobenzoylglutamate moiety of folate may induce the side chain of residue 31 (tyrosine or phenylalanine) in vertebrate DHFRs to adopt a conformation in which the opening to the pteridine binding site is too narrow to allow the substrate to diffuse away rapidly. A reverse conformational change of residue 31 is proposed to be required for tetrahydrofolate release.
引用
收藏
页码:7264 / 7273
页数:10
相关论文
共 53 条
  • [1] KINETICS OF TETRAHYDROBIOPTERIN SYNTHESIS BY RABBIT BRAIN DIHYDROFOLATE-REDUCTASE
    ABELSON, HT
    SPECTOR, R
    GORKA, C
    FOSBURG, M
    [J]. BIOCHEMICAL JOURNAL, 1978, 171 (01) : 267 - 268
  • [2] ANDERSON DH, 1987, THESIS U CALIFORNIA
  • [3] A KINETIC-STUDY OF WILD-TYPE AND MUTANT DIHYDROFOLATE REDUCTASES FROM LACTOBACILLUS-CASEI
    ANDREWS, J
    FIERKE, CA
    BIRDSALL, B
    OSTLER, G
    FEENEY, J
    ROBERTS, GCK
    BENKOVIC, SJ
    [J]. BIOCHEMISTRY, 1989, 28 (14) : 5743 - 5750
  • [4] APPLEMAN JR, 1990, J BIOL CHEM, V265, P2740
  • [5] THEORETICAL-STUDIES ON THE DIHYDROFOLATE-REDUCTASE MECHANISM - ELECTRONIC POLARIZATION OF BOUND SUBSTRATES
    BAJORATH, J
    KRAUT, J
    LI, ZQ
    KITSON, DH
    HAGLER, AT
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1991, 88 (15) : 6423 - 6426
  • [6] ELECTRON REDISTRIBUTION ON BINDING OF A SUBSTRATE TO AN ENZYME - FOLATE AND DIHYDROFOLATE-REDUCTASE
    BAJORATH, J
    KITSON, DH
    FITZGERALD, G
    ANDZELM, J
    KRAUT, J
    HAGLER, AT
    [J]. PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS, 1991, 9 (03) : 217 - 224
  • [7] HYDROGEN-BONDING IN GLOBULAR-PROTEINS
    BAKER, EN
    HUBBARD, RE
    [J]. PROGRESS IN BIOPHYSICS & MOLECULAR BIOLOGY, 1984, 44 (02) : 97 - 179
  • [8] BEARD WA, 1989, J BIOL CHEM, V264, P9391
  • [9] Blakley R. L., 1984, FOLATES PTERINES, P191
  • [10] BOLIN JT, 1982, J BIOL CHEM, V257, P13650