FROM KAPPA-POINCARE ALGEBRA TO KAPPA-LORENTZ QUASIGROUP - A DEFORMATION OF RELATIVISTIC SYMMETRY

被引:67
作者
LUKIERSKI, J [1 ]
RUEGG, H [1 ]
RUHL, W [1 ]
机构
[1] UNIV GENEVA,DEPT PHYS THEOR,CH-1211 GENEVA 4,SWITZERLAND
关键词
D O I
10.1016/0370-2693(93)90004-2
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We consider an algebraic ansatz for the class of nonlinear D=4 Poincare algebras and show that it contains only the quantum kappa-Poincare (real Hopf) algebras, obtained recently by the contraction of U(q)(O(3, 2)). We derive the explicit formulae for the finite kappa-Lorentz transformations generated by the realizations of the kappa-Poincare algebra in D=4 momentum space. These finite kappa-Lorentz transformations form a quasigroup, with generalized composition law of the boost parameters (rapidities). We consider further the (2s+1)-component field realizations with arbitrary spin s and their finite kappa-Lorentz transformations. For s=1/2 we obtain the kappa-covariant Dirac equation, derived from the finite kappa-Lorentz boost formula. After the coupling of the kappa-deformed Dirac equation to the electromagnetic potential we show that in the lowest order (linear) in m(el)/kappa the kappa-corrections to the hydrogen atom energy levels vanish but the value g=2 of the electron's magnetic moment is modified (g=2-->g=2[1+(m(el)/kappa)]. Finally the space-time description of kappa-relativistic fields is briefly discussed.
引用
收藏
页码:357 / 366
页数:10
相关论文
共 27 条
[1]  
ABRAMOWITZ M, 1964, NBS APPLIED MATH SER, V55
[2]  
BACRY H, 1992, CNRS CPT92P2831 LUM
[3]   QUASIGROUP CONSTRUCTION AND 1ST CLASS CONSTRAINTS [J].
BATALIN, IA .
JOURNAL OF MATHEMATICAL PHYSICS, 1981, 22 (09) :1837-1850
[4]  
BIEDENHARN LC, 1993, DIRAC COULOMB PROBLE
[5]   THE 3-DIMENSIONAL EUCLIDEAN QUANTUM GROUP E(3)Q AND ITS R-MATRIX [J].
CELEGHINI, E ;
GIACHETTI, R ;
SORACE, E ;
TARLINI, M .
JOURNAL OF MATHEMATICAL PHYSICS, 1991, 32 (05) :1159-1165
[6]  
DOBREV V, 1992, IN PRESS 2ND P WIGN
[7]  
DRINFELD WG, 1986, P INT C MATH BERKELE, P70
[8]  
Faddeev L., 1990, LENINGRAD MATH J, V1, P193
[9]   MORE ABOUT THE Q-DEFORMED POINCARE ALGEBRA [J].
GILLER, S ;
KOSINSKI, P ;
MAJEWSKI, M ;
MASLANKA, P ;
KUNZ, J .
PHYSICS LETTERS B, 1992, 286 (1-2) :57-62
[10]  
GILLER S, 1992, Q COVARIANT WAVE FUN