HUMAN SMOOTH-MUSCLE MYOSIN HEAVY-CHAIN ISOFORMS AS MOLECULAR MARKERS FOR VASCULAR DEVELOPMENT AND ATHEROSCLEROSIS

被引:307
作者
AIKAWA, M
SIVAM, PN
KUROO, M
KIMURA, K
NAKAHARA, K
TAKEWAKI, S
UEDA, M
YAMAGUCHI, H
YAZAKI, Y
PERIASAMY, M
NAGAI, R
机构
[1] UNIV TOKYO,DEPT INTERNAL MED 3,7-3-1 HONGO,BUNKYO KU,TOKYO 113,JAPAN
[2] UNIV VERMONT,DEPT PHYSIOL & BIOPHYS,BURLINGTON,VT
[3] UNIV TOKYO,DEPT INTERNAL MED 2,TOKYO 113,JAPAN
[4] UNIV TOKYO,DEPT LAB MED,TOKYO 113,JAPAN
[5] JUNTENDO UNIV,SCH MED,DEPT CARDIOL,TOKYO 113,JAPAN
[6] OSAKA CITY UNIV,SCH MED,DEPT PATHOL,OSAKA 545,JAPAN
关键词
MYOSIN HEAVY CHAINS; SMOOTH MUSCLE; ATHEROSCLEROSIS; VASCULAR DEVELOPMENT;
D O I
10.1161/01.RES.73.6.1000
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Smooth muscle myosin heavy chains (MHCs) exist in multiple isoforms. Rabbit smooth muscles contain at least three types of MHC isoforms: SM1 (204 kD), SM2 (200 kD), and SMemb (200 kD). SMI and SM2 are specific to smooth muscles, but SMemb is a nonmuscle-type MHC abundantly expressed in the embryonic aorta. We recently reported that these three MHC isoforms are differentially expressed in rabbit during normal vascular development and in experimental arteriosclerosis and atherosclerosis. The purpose of this study was to clarify whether expression of human smooth muscle MHC isoforms is regulated in developing arteries and in atherosclerotic lesions. To accomplish this, we have isolated and characterized three cDNA clones from human smooth muscle: SMHC94 (SM1), SMHC93 (SM2), and HSME6 (SMemb). The expression of SM2 mRNA in the fetal aorta was significantly lower as compared with SM1 mRNA, but the ratio of SM2 to SM1 mRNA was increased after birth. SMemb mRNA in the aorta was decreased after birth but appeared to be increased in the aged. To further examine the MHC expression at the histological level, we have developed three antibodies against human SM1, SM2, and SMemb using the isoform-specific sequences of the carboxyl terminal end. Immunohistologically, SM1 was constitutively positive from the fetal stage to adulthood in the apparently normal media of the aorta and coronary arteries, whereas SM2 was negative in fetal arteries of the early gestational stage. In human, unlike rabbit, aorta or coronary arteries, SMemb was detected even in the adult. However, smaller-sized arteries, like the vasa vasorum of the aorta or intramyocardial coronary arterioles, were negative for SMemb. Diffuse intimal thickening in the major coronary arteries was found to be composed of smooth muscles, reacting equally to three antibodies for MHC isoforms, but reactivities with anti-SM2 antibody were reduced with aging. With progression of atherosclerosis, intimal smooth muscles diminished the expression of not only SM2 but also SMI, whereas alpha-smooth muscle actin was well preserved. We conclude from these results that smooth muscle MHC isoforms are important molecular markers for studying human vascular smooth muscle cell differentiation as well as the cellular mechanisms of atherosclerosis.
引用
收藏
页码:1000 / 1012
页数:13
相关论文
共 39 条