EVOLUTION OF PATTERNS IN THE ANISOTROPIC COMPLEX GINZBURG-LANDAU EQUATION - MODULATIONAL INSTABILITY

被引:11
作者
BROWN, R [1 ]
FABRIKANT, AL [1 ]
RABINOVICH, MI [1 ]
机构
[1] RUSSIAN ACAD SCI, INST APPL PHYS, NIZHNII NOVGOROD, RUSSIA
关键词
D O I
10.1103/PhysRevE.47.4141
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We investigate the instability of the anisotropic complex Ginzburg-Landau equation as a function of its parameters. We derive the conditions necessary for the instability of a homogeneous solution. In addition, the analytic geometry of the unstable solutions in wave-number space is investigated. This allows us to establish the most unstable wave (as a function of Reynolds number) whose evolution will eventually dominate the dynamics.
引用
收藏
页码:4141 / 4150
页数:10
相关论文
共 23 条
[1]  
ARANSON S, 1987, 163 AC SCI USSR I AP
[2]   ON THE POSSIBILITY OF SOFT AND HARD TURBULENCE IN THE COMPLEX GINZBURG-LANDAU EQUATION [J].
BARTUCCELLI, M ;
CONSTANTIN, P ;
DOERING, CR ;
GIBBON, JD ;
GISSELFALT, M .
PHYSICA D, 1990, 44 (03) :421-444
[3]   ECKHAUS AND BENJAMIN-FEIR INSTABILITIES NEAR A WEAKLY INVERTED BIFURCATION [J].
BRAND, HR ;
DEISSLER, RJ .
PHYSICAL REVIEW A, 1992, 45 (06) :3732-3736
[4]   EVOLUTION OF THE ORDER PARAMETER IN SITUATIONS WITH BROKEN ROTATIONAL SYMMETRY [J].
BRAND, HR ;
LOMDAHL, PS ;
NEWELL, AC .
PHYSICS LETTERS A, 1986, 118 (02) :67-73
[5]  
BROWN R, UNPUB
[6]   DEFECT-MEDIATED TURBULENCE [J].
COULLET, P ;
GIL, L ;
LEGA, J .
PHYSICAL REVIEW LETTERS, 1989, 62 (14) :1619-1622
[7]   A FORM OF TURBULENCE ASSOCIATED WITH DEFECTS [J].
COULLET, P ;
GIL, L ;
LEGA, J .
PHYSICA D, 1989, 37 (1-3) :91-103
[8]   ON NON-LINEAR WATER-WAVES UNDER A LIGHT WIND AND LANDAU TYPE EQUATIONS NEAR THE STABILITY THRESHOLD [J].
FABRIKANT, AL .
WAVE MOTION, 1980, 2 (04) :355-360
[9]  
GAPONOVGREKHOV AV, 1987, IZV VUZ RADIOFIZ+, V30, P131
[10]  
GAPONOVGREKHOV AV, 1988, SOV SCI REV A, V10, P257