PROPERTIES OF NONPARAMETRIC ESTIMATORS OF AUTOCOVARIANCE FOR STATIONARY RANDOM-FIELDS

被引:85
作者
HALL, P [1 ]
PATIL, P [1 ]
机构
[1] AUSTRALIAN NATL UNIV,CTR MATH & APPLICAT,CANBERRA,ACT 2601,AUSTRALIA
关键词
D O I
10.1007/BF01199899
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We introduce nonparametric estimators of the autocovariance of a stationary random field. One of our estimators has the property that it is itself an autocovariance. This feature enables the estimator to be used as the basis of simulation studies such as those which are necessary when constructing bootstrap confidence intervals for unknown parameters. Unlike estimators proposed recently by other authors, our own do not require assumptions such as isotropy or monotonicity. Indeed, like nonparametric function estimators considered more widely in the context of curve estimation, our approach demands only smoothness and tail conditions on the underlying curve or surface (here, the autocovariance), and moment and mixing conditions on the random field. We show that by imposing the condition that the estimator be a covariance function we actually reduce the numerical value of integrated squared error.
引用
收藏
页码:399 / 424
页数:26
相关论文
共 20 条
[1]  
[Anonymous], 1978, MINING GEOSTATISTICS
[2]   TESTING VARIOGRAMS FOR POSITIVE-DEFINITENESS [J].
ARMSTRONG, M ;
DIAMOND, P .
JOURNAL OF THE INTERNATIONAL ASSOCIATION FOR MATHEMATICAL GEOLOGY, 1984, 16 (04) :407-421
[3]   NONPARAMETRIC-ESTIMATION OF A REGRESSION FUNCTION [J].
CHENG, KF ;
LIN, PE .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1981, 57 (02) :223-233
[4]   ON THE PROBLEM OF PERMISSIBLE COVARIANCE AND VARIOGRAM MODELS [J].
CHRISTAKOS, G .
WATER RESOURCES RESEARCH, 1984, 20 (02) :251-265
[5]  
CRESSIE NA, 1991, STATISTICS SPATIAL D
[6]  
Devroye L., 1985, NONPARAMETRIC DENSIT
[7]  
GASSER T, 1984, SCAND J STAT, V11, P171
[8]  
Gasser T., 1979, SMOOTHING TECHNIQUES, P23
[9]  
HALL P, 1980, MARTINGALE LIMIT THE
[10]  
HARDLE W, 1986, J MULTIVARIATE ANAL, V20, P91