ESTIMATION FOR THE MULTIPLE FACTOR MODEL WHEN DATA ARE MISSING

被引:111
作者
FINKBEINER, C
机构
[1] Invorydale Technical Center, 3W76, The Procter and Gamble Co., Cincinnati, 45217, Ohio
关键词
factor analysis; missing data;
D O I
10.1007/BF02296204
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A maximum likelihood method of estimating the parameters of the multiple factor model when data are missing from the sample is presented. A Monte Carlo study compares the method with 5 heuristic methods of dealing with the problem. The present method shows some advantage in accuracy of estimation over the heuristic methods but is considerably more costly computationally. © 1979 The Psychometric Society.
引用
收藏
页码:409 / 420
页数:12
相关论文
共 23 条