EFFECTS OF DIETHYL-ETHER ON MEMBRANE LIPID ORDERING AND ON ROTATIONAL-DYNAMICS OF THE ANION-EXCHANGE PROTEIN IN INTACT HUMAN ERYTHROCYTES - CORRELATIONS WITH ANION-EXCHANGE FUNCTION

被引:14
作者
COBB, CE
JULIAO, S
BALASUBRAMANIAN, K
STAROS, JV
BETH, AH
机构
[1] VANDERBILT UNIV,DEPT MOLEC PHYSIOL & BIOPHYS,NASHVILLE,TN 37232
[2] VANDERBILT UNIV,DEPT BIOCHEM,NASHVILLE,TN 37232
关键词
D O I
10.1021/bi00500a012
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The roles of lipid ordering and protein dynamics on the function of the anion exchange protein (band 3) in intact human erythrocytes have been investigated. The effects of diethyl ether on the ordering of membrane lipids and on the rotational dynamics of band 3 were measured by EPR and saturation-transfer EPR spectroscopies, respectively, and correlated with the anion exchange function of band 3. With increasing concentration, diethyl ether monotonically decreased the ordering of membrane lipids near the polar head-group region, as reported by the lipid-soluble spin probe 5-doxylstearic acid, but produced comparatively little change in the ordering of lipids in the hydrophobic midzone, as reported by 16-doxylstearic acid. The rotational mobility of band 3, as reported by the affinity spin-label bis(sulfo-N-succinimidyl) doxyl-2-spiro-5′-azelate [Anjaneyulu et al. (1989) Biochemistry 28, 6583-6590], also increased monotonically with increasing ether concentration. This increase in rotational mobility was not due to a demonstrable change in its state of oligomerization, since band 3 was readily cross-linked by bis(sulfo-N-succinimidyl) suberate to covalent dimers in the presence or absence of ether. At concentrations up to 2 vol % ether, hemolysis of erythrocytes was negligible, and the spectroscopic changes observed were completely reversed following its removal. Km, Vmax, and Eact for sulfate uptake into chloride-loaded erythrocytes were not significantly affected by addition of ether. These data indicate that the rate-limiting step in sulfate-chloride exchange is not affected by decreased ordering of membrane lipids, suggesting that structural rearrangements of band 3 which may be involved in anion translocation probably do not involve regions of the protein which are in contact with the lipid head-group regions of the bilayer. © 1990, American Chemical Society. All rights reserved.
引用
收藏
页码:10799 / 10806
页数:8
相关论文
共 47 条
[1]   BIS(SULFO-N-SUCCINIMIDYL) DOXYL-2-SPIRO-5'-AZELATE - SYNTHESIS, CHARACTERIZATION, AND REACTION WITH THE ANION-EXCHANGE CHANNEL IN INTACT HUMAN-ERYTHROCYTES [J].
ANJANEYULU, PSR ;
BETH, AH ;
COBB, CE ;
JULIAO, SF ;
SWEETMAN, BJ ;
STAROS, JV .
BIOCHEMISTRY, 1989, 28 (16) :6583-6590
[2]   DYNAMICS AND INTERACTIONS OF THE ANION CHANNEL IN INTACT HUMAN-ERYTHROCYTES - AN ELECTRON-PARAMAGNETIC RESONANCE SPECTROSCOPIC STUDY EMPLOYING A NEW MEMBRANE-IMPERMEANT BIFUNCTIONAL SPIN-LABEL [J].
BETH, AH ;
CONTURO, TE ;
VENKATARAMU, SD ;
STAROS, JV .
BIOCHEMISTRY, 1986, 25 (13) :3824-3832
[3]  
BETH AH, 1983, J PHYS CHEM-US, V87, P359, DOI 10.1021/j100225a039
[4]  
BETH AH, 1989, BIOL MAGN RESON, P179
[5]  
BIGELOW DJ, 1987, J BIOL CHEM, V262, P13449
[6]   ERYTHROCYTE-MEMBRANE EXPANSION DUE TO THE VOLATILE ANESTHETICS, THE 1-ALKANOLS, AND BENZYL ALCOHOL [J].
BULL, MH ;
BRAILSFORD, JD ;
BULL, BS .
ANESTHESIOLOGY, 1982, 57 (05) :399-403
[7]  
CABANTCHIK ZI, 1978, BIOCHIM BIOPHYS ACTA, V515, P234
[8]   ANION-EXCHANGE IN HUMAN-ERYTHROCYTES HAS A LARGE ACTIVATION VOLUME [J].
CANFIELD, VA ;
MACEY, RI .
BIOCHIMICA ET BIOPHYSICA ACTA, 1984, 778 (02) :379-384
[9]   ROTATIONAL DIFFUSION OF BAND 3 PROTEINS IN HUMAN ERYTHROCYTE-MEMBRANE [J].
CHERRY, RJ ;
BURKLI, A ;
BUSSLINGER, M ;
SCHNEIDER, G ;
PARISH, GR .
NATURE, 1976, 263 (5576) :389-393
[10]   CYTOSKELETAL RESTRAINTS OF BAND-3 ROTATIONAL MOBILITY IN HUMAN-ERYTHROCYTE MEMBRANES [J].
CLAGUE, MJ ;
HARRISON, JP ;
CHERRY, RJ .
BIOCHIMICA ET BIOPHYSICA ACTA, 1989, 981 (01) :43-50