PROOF OF A CONJECTURE BY ERDOS AND GRAHAM CONCERNING THE PROBLEM OF FROBENIUS

被引:17
作者
DIXMIER, J [1 ]
机构
[1] INST HAUTES ETUD SCI,F-91440 BURES SUR YVETTE,FRANCE
关键词
D O I
10.1016/0022-314X(90)90150-P
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let x1 < x2 ... < xb be integers ≥ 1 such that gcd(x1, ..., xb) = 1. Let S be the additive subsemigroup of N generated by x1, ..., xb. Let G(x1, ..., xb) be the greatest element of the (finite) set N|S. Let g(b, a) = sup G(x1, ..., xb), where the upper bound is taken over all systems x1, ..., xb such that 1 ≤ x1 < ... < xb ≤ a, gcd(x1, ..., xb) = 1. According to a conjecture of Erdös and Graham, it is proved that g(b, a) is roughly equal to a2 (b - 1), and the exact value of g(b, a) is computed when b - 1 divides a or a - 1 or a - 2. It is proved that S {frown} ](k - 1)a, ka] contains at least inf(a, kb - k + 1) elements for k = 1, 2, .... © 1990.
引用
收藏
页码:198 / 209
页数:12
相关论文
共 6 条
[1]   On a problem of partitions [J].
Brauer, A .
AMERICAN JOURNAL OF MATHEMATICS, 1942, 64 :299-312
[2]  
Erdos P., 1972, ACTA ARITH, V21, P399, DOI DOI 10.4064/AA-21-1-399-408
[3]  
Halberstam H., 1983, SEQUENCES
[4]  
LEWIN M, 1972, J LOND MATH SOC, V6, P61
[5]   BOUNDS FOR A LINEAR DIOPHANTINE PROBLEM OF FROBENIUS .2. [J].
VITEK, Y .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1976, 28 (06) :1280-1288
[6]  
[No title captured]