SINGULAR POINTS OF ALGEBRAIC-CURVES

被引:35
作者
SAKKALIS, T
FAROUKI, R
机构
[1] IBM Research Division, Thomas J. Watson Research Center, Yorktown Heights, New York, 10598
关键词
D O I
10.1016/S0747-7171(08)80019-3
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Given an irreducible algebraic curve f(x,y)=0 of degree n≥3 with rational coefficients,we describe algorithms for determinig whether the curve is singular, and if so, isolating its singular points, computing their multiplicities, and counting the number of distinct tangents at each. The algorithms require only rational arithmetic operations on the coefficients of f(x,y)=0, and avoid the need for more abstract symbolic representations of the singular point coordinates. © 1990, Academic Press Limited. All rights reserved.
引用
收藏
页码:405 / 421
页数:17
相关论文
共 13 条
[1]   Automatic Parameterization of rational curves and surface III: algebraic plane curves [J].
Abhyankar, Shreeram S. ;
Bajaj, Chanderjit L. .
Computer Aided Geometric Design, 1988, 5 (04) :309-321
[2]   HISTORICAL RAMBLINGS IN ALGEBRAIC GEOMETRY AND RELATED ALGEBRA [J].
ABHYANKAR, SS .
AMERICAN MATHEMATICAL MONTHLY, 1976, 83 (06) :409-448
[3]   Tracing surface intersections [J].
Bajaj, C.L. ;
Hoffmann, C.M. ;
Lynch, R.E. ;
Hopcroft, J.E.H. .
Computer Aided Geometric Design, 1988, 5 (04) :285-307
[4]   EUCLIDS ALGORITHM AND THEORY OF SUBRESULTANTS [J].
BROWN, WS ;
TRAUB, JF .
JOURNAL OF THE ACM, 1971, 18 (04) :505-&
[5]  
Coolidge J. L, 1959, TREATISE ALGEBRAIC P
[6]  
Farouki R. T., 1988, Computer-Aided Geometric Design, V5, P215, DOI 10.1016/0167-8396(88)90005-2
[7]  
FAROUKI RT, 1989, UNPUB COMPUT AIDED G
[8]   BIGRADIENTS AND PROBLEM OF ROUTH AND HURWITZ [J].
HOUSEHOLDER, AS .
SIAM REVIEW, 1968, 10 (01) :56-+
[9]  
Katz S., 1988, Computer-Aided Geometric Design, V5, P253, DOI 10.1016/0167-8396(88)90006-4
[10]  
SAKKALIS T, 1987, UNPUB SIAM J COMPUT