UNIVERSAL SINGULAR SETS FOR ONE-DIMENSIONAL VARIATIONAL-PROBLEMS

被引:15
作者
BALL, JM
NADIRASHVILI, NS
机构
[1] HERIOT WATT UNIV,DEPT MATH,EDINBURGH EH14 4AS,MIDLOTHIAN,SCOTLAND
[2] SCHMIDT EARTH PHYS INST,MOSCOW,RUSSIA
关键词
D O I
10.1007/BF01206961
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A study is made of the regularity properties of minimizers u of the integral I(u) = integral-b/a f(x, u, u') dx subject to the boundary conditions u(a) = alpha, u(b) = beta as the interval (a, b) and boundary values alpha,beta are varied. Under natural hypotheses on f it is shown that the set of points in the (x, u)-plane at which a minimizer u can have infinite derivative for some interval and boundary values is small in the sense of category.
引用
收藏
页码:429 / 438
页数:10
相关论文
共 10 条
[1]   ONE-DIMENSIONAL VARIATIONAL-PROBLEMS WHOSE MINIMIZERS DO NOT SATISFY THE EULER-LAGRANGE EQUATION [J].
BALL, JM ;
MIZEL, VJ .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1985, 90 (04) :325-388
[2]  
Clarke F. H., 1986, B POLISH ACAD SCI, V34, P73
[3]  
DAVIE AM, 1988, ARCH RATION MECH AN, V101, P161
[4]  
NECAS J, 1979, LECT NOTES MATH, V703
[5]  
Sychev M.A., 1992, SOV MATH DOKL, V44
[6]  
SYCHEV MA, 1991, SOV MATH DOKL, V43, P292
[7]  
Tonelli, 1921, FONDAMENTI CALCOLO V, VII
[8]  
TONELLI L, 1961, OPERE SCELTE, V3
[9]  
TONELLI L, 1934, ANN R SCUOLA NORM SU, V21, P289
[10]  
Tonelli L., 1921, FONDAMENTI CALCOLO V, V1