LOCATING BIFURCATIONS IN QUASI-PERIODICALLY FORCED SYSTEMS

被引:22
作者
CHASTELL, PR [1 ]
GLENDINNING, PA [1 ]
STARK, J [1 ]
机构
[1] UNIV CAMBRIDGE,DEPT APPL MATH & THEORET PHYS,CAMBRIDGE CB3 9EW,ENGLAND
关键词
D O I
10.1016/0375-9601(95)00107-E
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We describe a method for locating and following saddle-node bifurcations of invariant circles in quasiperiodically forced systems. This is based on making successive rational approximations to the quasiperiodic forcing, and computing the locations of saddle-node bifurcations of appropriate periodic orbits for the approximating system. An example of the application of the algorithm to the quasiperiodically forced sine map is given. The method is also equally applicable to period doubling bifurcations of invariant circles.
引用
收藏
页码:17 / 26
页数:10
相关论文
共 18 条
[1]   QUASIPERIODICALLY FORCED DAMPED PENDULA AND SCHRODINGER-EQUATIONS WITH QUASIPERIODIC POTENTIALS - IMPLICATIONS OF THEIR EQUIVALENCE [J].
BONDESON, A ;
OTT, E ;
ANTONSEN, TM .
PHYSICAL REVIEW LETTERS, 1985, 55 (20) :2103-2106
[2]  
BROER HW, 1990, AM MATH SOC, V83, P421
[3]  
DELALLAVE R, 1993, COMPUTATION DOMAINS
[4]   EVOLUTION OF ATTRACTORS IN QUASIPERIODICALLY FORCED SYSTEMS - FROM QUASIPERIODIC TO STRANGE NONCHAOTIC TO CHAOTIC [J].
DING, MZ ;
GREBOGI, C ;
OTT, E .
PHYSICAL REVIEW A, 1989, 39 (05) :2593-2598
[5]   A RIGOROUS PARTIAL JUSTIFICATION OF GREENE CRITERION [J].
FALCOLINI, C ;
DELALLAVE, R .
JOURNAL OF STATISTICAL PHYSICS, 1992, 67 (3-4) :609-643
[6]   STRANGE ATTRACTORS THAT ARE NOT CHAOTIC [J].
GREBOGI, C ;
OTT, E ;
PELIKAN, S ;
YORKE, JA .
PHYSICA D, 1984, 13 (1-2) :261-268
[7]   METHOD FOR DETERMINING A STOCHASTIC TRANSITION [J].
GREENE, JM .
JOURNAL OF MATHEMATICAL PHYSICS, 1979, 20 (06) :1183-1201
[8]  
Guckenheimer J., 2013, APPL MATH SCI, DOI 10.1007/978-1-4612- 1140-2
[10]   ROUTE TO CHAOS VIA STRANGE NONCHAOTIC ATTRACTORS [J].
KAPITANIAK, T ;
PONCE, E ;
WOJEWODA, J .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1990, 23 (08) :L383-L387