ARITHMETICAL THEORY OF ANOSOV DIFFEOMORPHISMS

被引:10
作者
VIVALDI, F
机构
关键词
D O I
10.1098/rspa.1987.0103
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
引用
收藏
页码:97 / 107
页数:11
相关论文
共 12 条
[1]   UNIVERSAL INSTABILITY OF MANY-DIMENSIONAL OSCILLATOR SYSTEMS [J].
CHIRIKOV, BV .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1979, 52 (05) :263-379
[2]  
COHN H, 1962, 2ND COURSE NUMBER TH
[3]  
Cohn H., 1978, CLASSICAL INVITATION, DOI DOI 10.1007/978-1-4612-9950-9
[4]  
DEDEKIND R, 1894, VORLESUNGEN ZAHLENTH
[5]  
Dirichlet P. G. L., 1894, VORLESUNGEN ZAHLENTH
[6]  
DIRICHLET PGL, 1837, WERKE, V1, P315
[7]  
Franks J, 1970, P S PURE MATH, V14, P61
[8]  
Gauss C., 1801, DISQUISITIONES ARITH
[9]  
MANNING A, 1975, LECTURE NOTES MATH, V468
[10]   ARITHMETICAL PROPERTIES OF STRONGLY CHAOTIC MOTIONS [J].
PERCIVAL, I ;
VIVALDI, F .
PHYSICA D, 1987, 25 (1-3) :105-130