INEQUALITIES FOR COVERING CODES

被引:15
作者
CALDERBANK, AR
SLOANE, NJA
机构
[1] AT&T Bell Lab, Murray Hill, NJ,, USA
关键词
Mathematical Techniques;
D O I
10.1109/18.21257
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Any code C with covering radius R must satisfy a set of linear inequalities that involve the Lloyd polynomial LR(x); these generalize the sphere bound. Syndrome graphs associated with a linear code C are introduced to help keep track of low-weight vectors in the same coset of C (if there are too many such vectors C cannot exist). As illustrations it is shown that t[17,10]=3 nd t[23,15]=3 where t[n,k] is the smallest covering radius of any [n,k] code.
引用
收藏
页码:1276 / 1280
页数:5
相关论文
共 7 条
[1]  
BRUALDI RA, SHORT CODES GIVEN CO
[2]   COVERING RADIUS - SURVEY AND RECENT RESULTS [J].
COHEN, GD ;
KARPOVSKY, MG ;
MATTSON, HF ;
SCHATZ, JR .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1985, 31 (03) :328-343
[3]   ON THE COVERING RADIUS OF CODES [J].
GRAHAM, RL ;
SLOANE, NJA .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1985, 31 (03) :385-401
[4]  
MacWilliams F.J, 1979, THEORY ERROR CORRECT
[5]  
SIMONIS J, IN PRESS IEEE T INFO
[6]  
VANWEE GJM, IN PRESS IEEE T INFO
[7]   AN UPDATED TABLE OF MINIMUM-DISTANCE BOUNDS FOR BINARY LINEAR CODES [J].
VERHOEFF, T .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1987, 33 (05) :665-680