VARIATION IN TERMINAL MORPHOLOGY AND PRESYNAPTIC INHIBITION AT CRUSTACEAN NEUROMUSCULAR-JUNCTIONS

被引:25
作者
TSE, FW [1 ]
MARIN, L [1 ]
JAHROMI, SS [1 ]
ATWOOD, HL [1 ]
机构
[1] UNIV TORONTO, DEPT PHYSIOL, TORONTO M5S 1A8, ONTARIO, CANADA
关键词
VESICLE; AXO-AXONAL; BOUTON; SYNAPSE; POSTSYNAPTIC POTENTIAL;
D O I
10.1002/cne.903040110
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Synaptic terminals of excitatory and inhibitory neurons supplying muscle fibers in leg muscles of crabs (Pachygrapsus crassipes and Hyas areneus) were investigated with light and electron microscopy. Terminals responsible for large excitatory postsynaptic potentials (EPSPs) at low frequencies of activation had a compact configuration with clusters of terminal boutons radiating from the main axon branch. Terminals responsible for small EPSPs had a more diffuse organization, with boutons often arranged in series along thin axon branches. Inhibitory neurons, when activated, produced both presynaptic and postsynaptic inhibitory effects, with the former being more potent at low frequencies of activation. Presynaptic inhibition was variable in magnitude but was generally strong in fibers with large EPSPs. Representative terminals from regions of strong and weak presynaptic inhibition were identified by activity-dependent uptake of horseradish peroxidase, serially sectioned, and reconstructed from electron micrographs. Both regions were found to contain axo-axonal synapses from inhibitory to excitatory terminals, with a larger number in the region of strong presynaptic inhibition. In addition, axo-axonal synapses were more uniformly distributed in the latter region. The number of inhibitory presynaptic dense bars (active zones) was somewhat higher in the region of weak inhibition, but larger individual dense bars occurred in the region of strong inhibition. Possible factors contributing to the differences in strength of inhibition include: (1) morphology and electrical properties of terminals; and (2) high probability of transmission at a relatively small number of inhibitory synapses during low frequency activation in the region of strong inhibition.
引用
收藏
页码:135 / 146
页数:12
相关论文
共 43 条
[1]  
Atwood H.L., 1982, P105
[2]  
Atwood H L, 1976, Prog Neurobiol, V7, P291, DOI 10.1016/0301-0082(76)90009-5
[3]   MATCHING OF EXCITATORY AND INHIBITORY INPUTS TO CRUSTACEAN MUSCLE FIBERS [J].
ATWOOD, HL ;
BITTNER, GD .
JOURNAL OF NEUROPHYSIOLOGY, 1971, 34 (01) :157-+
[4]   VARIATION IN PHYSIOLOGICAL PROPERTIES OF CRUSTACEAN MOTOR SYNAPSES [J].
ATWOOD, HL .
NATURE, 1967, 215 (5096) :57-&
[5]   SHORT-TERM AND LONG-TERM PLASTICITY AND PHYSIOLOGICAL DIFFERENTIATION OF CRUSTACEAN MOTOR SYNAPSES [J].
ATWOOD, HL ;
WOJTOWICZ, JM .
INTERNATIONAL REVIEW OF NEUROBIOLOGY, 1986, 28 :275-362
[6]   SYNAPTIC DEVELOPMENT IN CRAYFISH OPENER MUSCLE [J].
ATWOOD, HL ;
KWAN, I .
JOURNAL OF NEUROBIOLOGY, 1976, 7 (04) :289-312
[7]   NEUROMUSCULAR AND AXOAXONAL SYNAPSES OF CRAYFISH OPENER MUSCLE [J].
ATWOOD, HL ;
MORIN, WA .
JOURNAL OF ULTRASTRUCTURE RESEARCH, 1970, 32 (3-4) :351-+
[8]   RECIPROCAL AXO-AXONAL SYNAPSES BETWEEN EXCITATORY AND INHIBITORY NEURONS IN CRUSTACEANS [J].
ATWOOD, HL ;
KWAN, I .
BRAIN RESEARCH, 1979, 174 (02) :324-328
[9]  
ATWOOD HL, 1983, CELL TISSUE RES, V231, P103
[10]   AXOAXONAL SYNAPSE LOCATION AND CONSEQUENCES FOR PRESYNAPTIC INHIBITION IN CRUSTACEAN MOTOR AXON TERMINALS [J].
ATWOOD, HL ;
STEVENS, JK ;
MARIN, L .
JOURNAL OF COMPARATIVE NEUROLOGY, 1984, 225 (01) :64-74