UNBIASED DETERMINATION OF FORCES CAUSING OBSERVED PROCESSES - THE CASE OF ADDITIVE AND WEAK MULTIPLICATIVE NOISE

被引:17
作者
BORLAND, L
HAKEN, H
机构
[1] Institut für Theoretische Physik und Synergetik, Universität Stuttgart, Stuttgart 80, W-7000
来源
ZEITSCHRIFT FUR PHYSIK B-CONDENSED MATTER | 1992年 / 88卷 / 01期
关键词
D O I
10.1007/BF01573843
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
Using measured short time correlation functions of a stochastic process as constraints in the maximum calibre principle of Jaynes, we formulate the joint probability distribution function of the process. The Lagrange multipliers which hereby occur are determined by minimizing a time-dependent form of the (Kullback) information gain. This step can alternatively be interpreted as if our system builds a neural network which "learns" the Lagrange multipliers. Next, we proceed to determine explicit formulas-expressed in terms of the Lagrange multipliers - for the drift and diffusion coefficients appearing in the corresponding Ito-Langevin equation, which describe the forces underlying the process. Computer-simulations of two processes are presented, showing good confirmation of the theory.
引用
收藏
页码:95 / 103
页数:9
相关论文
共 9 条
[1]  
ANTOINE JP, 1980, FUNCTIONAL INTEGRATI
[2]  
Graham R, 1973, SPRINGER TRACTS MODE, V66
[3]   APPLICATION OF THE MAXIMUM INFORMATION ENTROPY PRINCIPLE TO SELF-ORGANIZING SYSTEMS [J].
HAKEN, H .
ZEITSCHRIFT FUR PHYSIK B-CONDENSED MATTER, 1985, 61 (03) :335-338
[4]   A NEW ACCESS TO PATH-INTEGRALS AND FOKKER PLANCK EQUATIONS VIA THE MAXIMUM CALIBER PRINCIPLE [J].
HAKEN, H .
ZEITSCHRIFT FUR PHYSIK B-CONDENSED MATTER, 1986, 63 (04) :505-510
[5]   THE MAXIMUM-ENTROPY PRINCIPLE FOR NONEQUILIBRIUM PHASE-TRANSITIONS - DETERMINATION OF ORDER PARAMETERS, SLAVED MODES, AND EMERGING PATTERNS [J].
HAKEN, H .
ZEITSCHRIFT FUR PHYSIK B-CONDENSED MATTER, 1986, 63 (04) :487-491
[6]  
HAKEN H, 1988, INFORMATION SELF ORG
[7]  
Jaynes E, 1985, SPRINGER SERIES SYNE
[8]   INFORMATION THEORY AND STATISTICAL MECHANICS [J].
JAYNES, ET .
PHYSICAL REVIEW, 1957, 106 (04) :620-630
[9]  
KULLBACK S, 1951, INFORMATION THEORY S